欢迎来到天天文库
浏览记录
ID:56718094
大小:1.05 MB
页数:28页
时间:2020-07-05
《线性方程组求解.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章线性方程组§1消元法一、线性方程组的初等变换现在讨论一般线性方程组.所谓一般线性方程组是指形式为(1)的方程组,其中代表个未知量,是方程的个数,称为线性方程组的系数,称为常数项.方程组中未知量的个数与方程的个数不一定相等.系数的第一个指标表示它在第个方程,第二个指标表示它是的系数.所谓方程组(1)的一个解就是指由个数组成的有序数组,当分别用代入后,(1)中每个等式都变成恒等式.方程组(1)的解的全体称为它的解集合.解方程组实际上就是找出它全部的解,或者说,求出它的解集合.如果两个方程组有相同的解集合,它们就称为同解的.显然,如果知道了一个线性
2、方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵(2)来表示.实际上,有了(2)之后,除去代表未知量的文字外线性方程组(1)就确定了,而采用什么文字来代表未知量当然不是实质性的.在中学所学代数里学过用加减消元法和代入消元法解二元、三元线性方程组.实际上,这个方法比用行列式解线性方程组更有普遍性.下面就来介绍如何用一般消元法解一般线性方程组.例如,解方程组第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成第二个方程减去第三个方程的2倍,把第二第三两个方程的次序互换,即得这样,就容易
3、求出方程组的解为(9,-1,-6).分析一下消元法,不难看出,它实际上是反复地对方程组进行变换,而所用的变换也只是由以下三种基本的变换所构成:1.用一非零数乘某一方程;2.把一个方程的倍数加到另一个方程;3.互换两个方程的位置.定义1变换1,2,3称为线性方程组的初等变换.二、线性方程组的解的情形消元的过程就是反复施行初等变换的过程.下面证明,初等变换总是把方程组变成同解的方程组.下面我们来说明,如何利用初等变换来解一般的线性方程组.对于方程组(1),首先检查的系数.如果的系数全为零,那么方程组(1)对没有任何限制,就可以取任何值,而方程组(1)可
4、以看作的方程组来解.如果的系数不全为零,那么利用初等变换3,可以设.利用初等变换2,分别把第一个方程的倍加到第个方程().于是方程组(1)就变成(3)其中这样,解方程组(1)的问题就归结为解方程组(4)的问题.显然(4)的一个解,代入(3)的第一个方程就定出的值,这就得出(3)的一个解;(3)的解显然都是(4)的解.这就是说,方程组(3)有解的充要条件为方程组(4)有解,而(3)与(1)是同解的,因之,方程组(1)有解的充要条件为方程组(4)有解.对(4)再按上面的考虑进行变换,并且这样一步步作下去,最后就得到一个阶梯形方程组.为了讨论起来方便,不
5、妨设所得的方程组为(5)其中.方程组(5)中的“0=0”这样一些恒等式可能不出现,也可能出现,这时去掉它们也不影响(5)的解.而且(1)与(5)是同解的.现在考虑(5)的解的情况.如(5)中有方程,而.这时不管取什么值都不能使它成为等式.故(5)无解,因而(1)无解.当是零或(5)中根本没有“0=0”的方程时,分两种情况:1).这时阶梯形方程组为(6)其中.由最后一个方程开始,的值就可以逐个地唯一决定了.在这个情形,方程组(6)也就是方程组(1)有唯一的解.例1解线性方程组2).这时阶梯形方程组为其中.把它改写成(7)由此可见,任给一组值,就唯一地
6、定出的值,也就是定出方程组(7)的一个解.一般地,由(7)我们可以把通过表示出来,这样一组表达式称为方程组(1)的一般解,而称为一组自由未知量.例2解线性方程组从这个例子看出,一般线性方程组化成阶梯形,不一定就是(5)的样子,但是只要把方程组中的某些项调动一下,总可以化成(5)的样子.以上就是用消元法解线性方程组的整个过程.总起来说就是,首先用初等变换化线性方程组为阶梯形方程组,把最后的一些恒等式“0=0”(如果出现的话)去掉.如果剩下的方程当中最后的一个等式是零等于一非零的数,那么方程组无解,否则有解.在有解的情况下,如果阶梯形方程组中方程的个数
7、等于未知量的个数,那么方程组有唯一的解;如果阶梯形方程组中方程的个数小于未知量的个数,那么方程组就有无穷多个解.定理1在齐次线性方程组中,如果,那么它必有非零解.矩阵(10)称为线性方程组(1)的增广矩阵.显然,用初等变换化方程组(1)成阶梯形就相当于用初等行变换化增广矩阵(10)成阶梯形矩阵.因此,解线性方程组的第一步工作可以通过矩阵来进行,而从化成的阶梯形矩阵就可以判别方程组有解还是无解,在有解的情形,回到阶梯形方程组去解.例3解线性方程组§2维向量空间定义2所谓数域上一个维向量就是由数域中个数组成的有序数组(1)称为向量(1)的分量.用小写希
8、腊字母来代表向量.定义3如果维向量的对应分量都相等,即.就称这两个向量是相等的,记作.维向量之间的基本关系是用向量的加法和
此文档下载收益归作者所有