欢迎来到天天文库
浏览记录
ID:56681479
大小:58.00 KB
页数:2页
时间:2020-07-04
《高中数学《函数模型及其应用》教案1 新人教A版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.2.1几类不同增长的函数模型(1)教学目的:使学生了解常用的描述现实世界中不同增长规律的函数模型:指数函数、 对数函数以及幂函数,了解直线上升、指数爆炸、对数增长等增长含义。教学重难点:通过图象对指数函数、对数函数、幂函数模型的增长速度对比,让学生理解直线上升、指数爆炸、对数增长等增长的含义。建立实际问题的函数模型是难点。教学过程一、复习提问 写出指数函数、对数函数、幂函数的一般形式,你知道它们的变化规律吗?二、新课 例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;
2、 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。 请问,你会选择哪种投资方案?········xy02468101214012010080604020················y=40········y=10xy=0.4×2x-1 解:设第x天所得回报是y元,则各方案的函数模型为:方案一:y=40(x∈N+)方案二:y=10x(x∈N+)方案三:y=0.4×(x∈N+)方案一是常数函数,方案二是增函数,呈直线型增长,方案三也是增函数,呈指数型增长,增长速度比其它
3、2个方案快得多,称为“指数爆炸”。 投资5天以下选方案一,投资5――8天选方案二,投资8天以上选方案三。 再看累计回报数表P114。投资8天以下(不含8天),应选择第一种投资方案,投资8--10天,应选择第二种投资方案;投资11天(含11天)以上,则应选择第三种方案。 例2、某公司为了实现1000万元利润目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%。现有三个奖励模型:y=0.25x,
4、y=+1,y=1.002x。其中哪个模型能符合公司的要求? 分析:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1000万元,所以部门销售利润一般不会超过公司总的利润,于是,只需在区间[10,1000]上,检验三个模型是否符合公司要求即可。 不妨先作函数图象,通过观察函数的图象,得到初步的结论,再通过具体计算,确认结果。练习:P116作业:P126 1、2
此文档下载收益归作者所有