欢迎来到天天文库
浏览记录
ID:56636475
大小:537.00 KB
页数:7页
时间:2020-07-01
《小学数学精讲教案3_2_5 走停问题 教师版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、走停问题教学目标1、学会化线段图解决行程中的走停问题2、能够运用等式或比例解决较难的行程题3、学会如何用枚举法解行程题知识点拨本讲中的知识点较为复杂,主要讲行程过程中出现休息停顿等现象时的问题处理。解题办法比较驳杂。例题精讲模块一、停一次的走停问题【例1】甲、乙两车分别同时从A,B两城相向行驶,6时后可在途中某处相遇。甲车因途中发生故障抛描,修理2.5时后才继续行驶,因此从出发到相遇经过7.5时。甲车从A城到B城共用多长时间?【考点】行程问题之走停问题【难度】3星【题型】填空【解析】12.5时。由题意推知,两车相遇时,甲
2、车实际行驶5时,乙车实际行驶7.5时。与计划的6时相遇比较,甲车少行1时,乙车多行1.5时。也就是说甲车行1时的路程,乙车需行1.5时。进一步推知,乙车行7.5时的路程,甲车需行5时。所以,甲车从A城到B城共用7.5+5=12.5(时)。【答案】12.5时【例2】龟兔赛跑,同时出发,全程6990米,龟每分钟爬30米,兔每分钟跑330米,兔跑了10分钟就停下来睡了215分钟,醒来后立即以原速往前跑,问龟和兔谁先到达终点?先到的比后到的快多少米?【考点】行程问题之走停问题【难度】3星【题型】填空【解析】先算出兔子跑了(米),
3、乌龟跑了(米),此时乌龟只余下(米),乌龟还需要(分钟)到达终点,兔子在这段时间内跑了(米),所以兔子一共跑(米).所以乌龟先到,快了(米).【答案】米【例3】快车与慢车分别从甲、乙两地同时开出,相向而行,经过5时相遇。已知慢车从乙地到甲地用12.5时,慢车到甲地停留1时后返回,快车到乙地停留2时后返回,那么两车从第一次相遇到第二次相遇共需多长时间?【考点】行程问题之走停问题【难度】3星【题型】填空【解析】11时36分。快车5时行的路程慢车需行12.5-5=7.5(时),所以快车与慢车的速度比为7.5∶5=3∶2。因为两
4、车第一次相遇时共行甲、乙两地的一个单程,第二次相遇时共行三个单程,所以若两车都不停留,则第一次相遇到第二次相遇需10时。现在慢车停留1时,快车停留2时,所以第一次相遇后时,两车间的距离快车还需行分,这段距离两车共行需(分)。第一次相遇到第二次相遇共需11时36分。【答案】11时36分【例1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路.他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】行程问题之走停问题【难度】3
5、星【题型】填空【解析】从整体上考虑,邮递员走了12+8=20千米的上坡路,走了12+8=20千米的下坡路,所以共用时间为:20÷4+20÷5=9(小时),邮递员是下午7+10-12=5(时)回到邮局。【答案】5时【例2】一辆汽车原计划6小时从A城到B城。汽车行驶了一半路程后,因故在途中停留了30分钟。如果按照原定的时间到达B城,汽车在后一半路程的速度就应该提高12千米/时,那么A、B两城相距多少千米?【考点】行程问题之走停问题【难度】3星【题型】填空【解析】3汽车行驶了一半路程即行驶了3小时,那么他后一半路程行驶了2.5
6、小时,2.5小时比原来2.5小时多行驶2.5×12=30千米。则原来的速度为30÷(3-2.5)=60(千米)。那么A、B两地相距60×6=360(千米)【答案】360千米【巩固】一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的3/5时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?【考点】行程问题之走停问题【难度】3星【题型】填空【解析】当以原速行驶到全程的3/5时,总时间也用了3/5,所以还剩下50×(1-3/5)=20分钟的路
7、程;修理完毕时还剩下20-5=15分钟,在剩下的这段路程上,预计时间与实际时间之比为20:15=4:3,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为4:3,因此每分钟应比原来快750×4/3-750=250米.【答案】250米【例3】一列火车出发1小时后因故停车0.5小时,然后以原速的3/4前进,最终到达目的地晚1.5小时.若出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的3/4前进,则到达目的地仅晚1小时,那么整个路程为多少公里?【考点】行程问题之走停问题【难度】3星【题型】填空【
8、解析】出发1小时后因故停车0.5小时,然后以原速的前进,最终到达目的地晚1.5小时,所以后面以原速的前进的时间比原定时间多用小时,而速度为原来的,所用时间为原来的,所以后面的一段路程原定时间为小时,原定全程为4小时;出发1小时后又前进90公里再因故停车0.5小时,然后同样以原速的前进,则到达目的地仅晚1小时,类似分析
此文档下载收益归作者所有