欢迎来到天天文库
浏览记录
ID:56608158
大小:190.00 KB
页数:4页
时间:2020-06-29
《高考数学复习点拨 回归分析的基本思想及初步应用考点击破.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、回归分析的基本思想及初步应用考点击破考点一、基本概念函数关系是一种确定关系,而相关关系是一种非确定关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。例1下列变量之间的关系是函数关系的是。(1)正方形的边长与面积之间的关系(2)水稻产量与施肥量之间的关系(3)人的身高与年龄之间的关系(4)降雪量与交通事故发生率之间的关系分析:两变量之间的关系有两种:函数关系和带有随机性的相关关系。(1)是函数关系;(2)不是严格的函数关系,但是具有相关性,因而是相关关系;(3)既不是函数关系,也不是相关关系
2、,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;(4)降雪量与交通事故发生率之间具有相关关系。解析:填(2)(4)评注:该例主要考查对变量相关关系概念的掌握。考点二、回归直线方程设与是具有相关关系的两个变量,且相应于个观测值的个点大致分布在一条直线的附近,这条直线就叫做回归直线。例2假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:使用年限23456维修费用若由资料知对呈线性相关关系,试求:(1)线性回归方程;用心爱心专心(2)估计使用年限10年时,维修费用是多少
3、?分析:因为对呈线性相关关系,所以可以用线性相关的方法解决问题。解析:(1)制表12345合计2345620254916253690于是有,。∴线性回归方程为。(2)当时,(万元),即估计使用10年时维修费用是万元。评注:知道对呈线性相关关系,无须进行相关性检验,否则,应首先进行相关性检验。考点3回归分析通过对有关数据的分析,作出散点图,并利用散点图直观地认识两个变量的相关关系,也可以用相关系数来确定两个变量的线性相关关系。例3一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测
4、得的数据如下:零件数102030405060708090100用心爱心专心(个)加工时间(分)626875818995102108115122(1)与是否具有线性相关关系?(2)如果与具有线性相关关系,求回归直线方程。分析:先求出的值,的值越接近于1,表明两个变量的线性相关关系越强。解析:列出下表,并用科学计算器进行计算。1234567891010203040506070809010062687581899510210811512262013602250324044505700714086401035012
5、200,。∵,∴与具有线性相关关系。(2)设所求的回归直线方程为,那么由上表可知:,,用心爱心专心∴所求的回归直线方程为。评注:这类问题的解决方法一般分为两步,第一步分析两个变量是否有线性相关关系,第二步求回归直线方程。用心爱心专心
此文档下载收益归作者所有