欢迎来到天天文库
浏览记录
ID:56097144
大小:49.52 KB
页数:11页
时间:2020-03-16
《小学数学速算巧算.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
小学数学速算与巧算方法例解速算与巧算 在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。 一、“凑整”先算 1.计算:(1)24+44+56 (2)53+36+47 解:(1)24+44+56=24+(44+56) =24+100=124 这样想:因为44+56=100是个整百的数,所以先把它们的和算出来. (2)53+36+47=53+47+36 =(53+47)+36=100+36=136 这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来. 2.计算:(1)96+15 (2)52+69 解:(1)96+15=96+(4+11) =(96+4)+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算. (2)52+69=(21+31)+69 =21+(31+69)=21+100=121 这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算. 3.计算:(1)63+18+19 (2)28+28+28 解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19) =60+20+20=100 这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算. (2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84 这样想:因为28+2=30可凑整,但最后要把多加的三个2减去. 二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变 计算:(1)45-18+19 (2)45+18-19 解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46 这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1. (2)45+18-19=45+(18-19) =45-1=44 这样想:加18减19的结果就等于减1.三、计算等差连续数的和 相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 1,2,3,4,5,6,7,8,9 1,3,5,7,9 2,4,6,8,10 3,6,9,12,15 4,8,12,16,20等等都是等差连续数. 1.等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成: (1)计算:1+2+3+4+5+6+7+8+9 =5×9中间数是5 =45共9个数 (2)计算:1+3+5+7+9 =5×5中间数是5 =25共有5个数 (3)计算:2+4+6+8+10 =6×5中间数是6 =30共有5个数 (4)计算:3+6+9+12+15 =9×5中间数是9 =45共有5个数 (5)计算:4+8+12+16+20 =12×5中间数是12 =60共有5个数 2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成: (1)计算: 1+2+3+4+5+6+7+8+9+10 =(1+10)×5=11×5=55 共10个数,个数的一半是5,首数是1,末数是10. (2)计算: 3+5+7+9+11+13+15+17 =(3+17)×4=20×4=80 共8个数,个数的一半是4,首数是3,末数是17. (3)计算: 2+4+6+8+10+12+14+16+18+20 =(2+20)×5=110 共10个数,个数的一半是5,首数是2,末数是20.四、基准数法 (1)计算:23+20+19+22+18+21 解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去. 23+20+19+22+18+21 =20×6+3+0-1+2-2+1 =120+3=123 6个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推. (2)计算:102+100+99+101+98 解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算. 102+100+99+101+98 =100×5+2+0-1+1-2=500 方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家) 102+100+99+101+98 =98+99+100+101+102 =100×5=500 可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算 1.什么叫“补数”? 两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。 如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。 又如:11+89=100,33+67=100, 22+78=100,44+56=100, 55+45=100, 在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。 对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。 如:87655→12345,46802→53198, 87362→12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。 2.互补数先加。例1巧算下面各题: ①36+87+64②99+136+101 ③ 1361+972+639+28 解:①式=(36+64)+87 =100+87=187 ②式=(99+101)+136 =200+136=336 ③式=(1361+639)+(972+28) =2000+1000=3000 3.拆出补数来先加。 例2①188+873②548+996③9898+203 解:①式=(188+12)+(873-12)(熟练之后,此步可略) =200+861=1061 ②式=(548-4)+(996+4) =544+1000=1544 ③式=(9898+102)+(203-102) =10000+101=10101 4.竖式运算中互补数先加。 如: 二、减法中的巧算 1.把几个互为“补数”的减数先加起来,再从被减数中减去。 例3①300-73-27 ②1000-90-80-20-10 解:①式=300-(73+27) =300-100=200 ②式=1000-(90+80+20+10) =1000-200=800 2.先减去那些与被减数有相同尾数的减数。 例4①4723-(723+189) ②2356-159-256 解:①式=4723-723-189 =4000-189=3811 ②式=2356-256-159 =2100-159 =1941 3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。 例5①506-397 ②323-189 ③467+997 ④987-178-222-390 解:①式=500+6-400+3(把多减的 3再加上) =109 ②式=323-200+11(把多减的11再加上) =123+11=134 ③式=467+1000-3(把多加的3再减去) =1464 ④式=987-(178+222)-390 =987-400-400+10=197 三、加减混合式的巧算 1.去括号和添括号的法则 在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即: a+(b+c+d)=a+b+c+d a-(b+a+d)=a-b-c-d a-(b-c)=a-b+c例6①100+(10+20+30) ②100-(10+20+3O) ③100-(30-10) 解:①式=100+10+20+30 =160 ②式=100-10-20-30 =40 ③式=100-30+10 =80例7计算下面各题: ①100+10+20+30 ②100-10-20-30 ③100-30+10 解:①式=100+(10+20+30) =100+60=160 ②式=100-(10+20+30) =100-60=40 ③式=100-(30-10) =100-20=80 2.带符号“搬家”例8计算 325+46-125+54 解:原式=325-125+46+54 =(325-125)+(46+54) =200+100=300 注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。 3.两个数相同而符号相反的数可以直接“抵消”掉例9计算9+2-9+3 解:原式=9-9+2+3=5 4.找“基准数”法 几个比较接近于某一整数的数相加时,选这个整数为“基准数”。例10计算78+76+83+82+77+80+79+85 =6401.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000例1计算①123×4×25 ②125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。 例2计算①24×25 ②56×125 ③125×5×32×5 解:①式=6×(4×25) =6×100=600 ②式=7×8×125=7×(8×125) =7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=100000 3.应用乘法分配律。 例3计算①175×34+175×66 ②67×12+67×35+67×52+6 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) =67×100=6700 (原式中最后一项67可看成67×1) 例4计算①123×101②123×99 解:①式=123×(100+1)=123×100+123 =12300+123=12423 ②式=123×(100-1) =12300-123=12177 4.几种特殊因数的巧算。例5 一个数×10,数后添0; 一个数×100,数后添00; 一个数×1000,数后添000; 以此类推。 如:15×10=150 15×100=1500 15×1000=15000例6一个数×9,数后添0,再减此数; 一个数×99,数后添00,再减此数; 一个数×999,数后添000,再减此数;… 以此类推。 如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988例7一个偶数乘以5,可以除以2添上0。 如:6×5=30 16×5=80 116×5=580。例8一个数乘以11,“两头一拉,中间相加”。 如2222×11=24442 2456×11=27016 例9一个偶数乘以15,“加半添0”. 24×15 =(24+12)×10 =360 因为 24×15 =24×(10+5) =24×(10+10÷2) =24×10+24×10÷2(乘法分配律) =24×10+24÷2×10(带符号搬家) =(24+24÷2)×10(乘法分配律)例10 个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25 如15×15=1×(1+1)×100+25=225 25×25=2×(2+1)×100+25=625 35×35=3×(3+1)×100+25=1225 45×45=4×(4+1)×100+25=2025 55×55=5×(5+1)×100+25=3025 65×65=6×(6+1)×100+25=4225 75×75=7×(7+1)×100+25=5625 85×85=8×(8+1)×100+25=7225 95×95=9×(9+1)×100+25=9025 还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。 二、除法及乘除混合运算中的巧算 1.在除法中,利用商不变的性质巧算 商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。例11计算①110÷5②3300÷25 ③44000÷125 解:①110÷5=(110×2)÷(5×2) =220÷10=22 ②3300÷25=(3300×4)÷(25×4) =13200÷100=132 ③44000÷125=(44000×8)÷(125×8) =352000÷1000=352 2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。例12864×27÷54 =864÷54×27 =16×27 =432 3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。 例13①13÷9+5÷9②21÷5-6÷5 ③2090÷24-482÷24 ④187÷12-63÷12-52÷12 解:①13÷9+5÷9=(13+5)÷9 =18÷9=2 ②21÷5-6÷5=(21-6)÷5 =15÷5=3 ③2090÷24-482÷24=(2090-482)÷24 =1608÷24=67 ④187÷12-63÷12-52÷12 =(187-63-52)÷12 =72÷12=6 4.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。 即a×(b÷c)=a×b÷c从左往右看是去括号, a÷(b×c)=a÷b÷c 从右往左看是添括号。 a÷(b÷c)=a÷b×c例14①1320×500÷250 ②4000÷125÷8 ③5600÷(28÷6) ④372÷162×54 ⑤2997×729÷(81×81) 解:①1320×500÷250=1320×(500÷250) =1320×2=2640 ②4000÷125÷8=4000÷(125×8) =4000÷1000=4 ③5600÷(28÷6)=5600÷28×6 =200×6=1200 ④372÷162×54=372÷(162÷54) =372÷3=124 ⑤2997×729÷(81×81)=2997×729÷81÷81 =(2997÷81)×(729÷81)=37×9 =333例1计算9+99+999+9999+99999 解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧. 9+99+999+9999+99999 =(10-1)+(100-1)+(1000-1)+(10000-1) +(100000-1) =10+100+1000+10000+100000-5 =111110-5 =111105.例2计算199999+19999+1999+199+19 解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如199+1=200) 199999+19999+1999+199+19 =(19999+1)+(19999+1)+(1999+1)+(199+1) +(19+1)-5 =200000+20000+2000+200+20-5 =222220-5 =22225.例3 计算(1+3+5+…+1989)-(2+4+6+…+1988) 解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是: 从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是: 从2到1988共有994个偶数,凑成497个1990. 1990×497+995—1990×497=995.例4计算389+387+383+385+384+386+388 解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 389+387+383+385+384+386+388 =390×7—1—3—7—5—6—4— =2730—28 =2702. 解法2:也可以选380为基准数,则有 389+387+383+385+384+386+388 =380×7+9+7+3+5+4+6+8 =2660+42 =2702.例5计算(4942+4943+4938+4939+4941+4943)÷6 解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数. (4942+4943+4938+4939+4941+4943)÷6 =(4940×6+2+3—2—1+1+3)÷6 =(4940×6+6)÷6(这里没有把4940×6先算出来,而是运 =4940×6÷6+6÷6运用了除法中的巧算方法) =4940+1 =4941.例6计算54+99×99+45 解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了. 54+99×99+45 =(54+45)+99×99 =99+99×99 =99×(1+99) =99×100 =9900.例7计算9999×2222+3333×3334 解:此题如果直接乘,数字较大,容易出错.如果将9999变为3333×3,规律就出现了. 9999×2222+3333×3334 =3333×3×2222+3333×3334 =3333×6666+3333×3334 =3333×(6666+3334) =3333×10000 =33330000.例8 1999+999×999 解法1:1999+999×999 =1000+999+999×999 =1000+999×(1+999) =1000+999×1000 =1000×(999+1) =1000×1000 =1000000. 解法2:1999+999×999 =1999+999×(1000-1) =1999+999000-999 =(1999-999)+999000 =1000+999000 =1000000. 有多少个零. 总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处