欢迎来到天天文库
浏览记录
ID:55549503
大小:667.50 KB
页数:5页
时间:2020-05-16
《2016华东师大版八年级数学上册知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、知识点内容备注平方根概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术平方根:正数a的正的平方根记作:性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根考点:(a的取值范围a)②()③(a的取值范围为任意实数)④=例:=()=5⑤=a(a为任意实数)例:=2,=—2立方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0实数1.包括有理数和无理数2.实数与数轴上的点一一对应常见的无理数(无限不循环小数)有:①π②开方开不尽的数,如,等考点:判断下列的数哪些是无理数?有理数:分数
2、和整数的统称如:,,0都是有理数数学8年级上册第十一章:数的开方知识点内容备注幂的运算同底数幂的乘法同底数幂相乘,底数不变,指数相加逆用:=幂的乘方幂的乘方,底数不变,指数相乘逆用:例:积的乘法积的乘方,把积的每一个因式分别相乘,再把所得的幂相乘==逆用:例=1同底数幂的除法同底数幂相处,底数不变,指数相减逆用:例:若=2,则的值是?整式单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同的字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的一个因式例:·=[3·(-2)]·(·x)·(y·)=的乘法单项式与多项式相乘单项式与多项式相乘,将单项式分别乘以多项式的每
3、一项,再将所得的积相加例:(-2=(-2+(-2)=-6+10多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加例:(X+2)(X—3)==整式的除法单项式除于单项式单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式中出现的字母,则连同它的指数一起作为商的一个因式例:24=(24)()()=8多项式除于单项式多项式除于单项式,先用这个多项式的每一项除于这个单项式,再把所得的商相加例:(9)(3x)=9=3乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差例:(a+b)(a-b)=逆用:=(a+b)(a-b)两数和的平方公
4、式两数和的平方,等于这两数的平方和加上它们的积的2倍例:逆用两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍例:逆用因式分解定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:①提公因式法②运用乘法公式法=(a+b)(a-b)常考点:①两种因式分解法一起运用(先提公因式,然后再运用公式法)例:=②“1”常常要变成“”例:第十三章:全等三角形知识点内容备注全等三角形性质:全等三角形的对应边和对应角相等三角形全等的判定:1.(边边边)S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。2.(边、角、边)S.A.S.:如果两个三角形的其
5、中两条边都对应地相等,且两条边夹着的角都对应地相等,那么这两个三角形全等。3.(角、边、角)A.S.A.:如果两个三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,那么这两个三角形全等。4.(角、角、边)A.A.S.:如果两个三角形的其中两个角都对应地相等,且对应相等的角所对应的边对应相等,那么这两个三角形全等。5.(斜边、直角边)H.L.:如果两个直角三角形中一条斜边和一条直角边都对应相等,那么常考点:①公共边②公共角③两直线平行(两直线平行,同位角相等,内错角相等,同旁内角互补)④对顶角(对顶角相等)需要注意:判定两直角三角形全等:五个判定都可用,特殊:斜边直角边这两个三角
6、形全等。等腰三角形性质①等腰三角形的两腰相等②等腰三角形的两底角相等③等腰三角形“三线合一”(顶角的平分线,底边上的中线,底边上的高重合)④等腰三角形是轴对称图形,只有一条对称轴⑤等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)考点:①若则说明②等腰三角形“三线合一”1.若AD则BD=BC,∠BAD=∠CAD2.自己补充完整判定①定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。②判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。线段的垂直平分线性质定理:线段垂直平分线上的点到线段两端点的距离相等已知:若EF,垂足为点C,AC=BC,
7、点D是直线EF上任意一点结论:DA=DB考点:若直线EF是线段AB的垂直平分线,则:①DA=DB②是等腰三角形,因此具有等腰三角形的一切性质性质定理的逆定理:到线段两端点距离相等的点在线段的垂直平分线上已知:DA=DB结论:点D在线段AB的垂直平分线上角平分线性质定理:角平分线上的点到角两边的距离相等已知:OP平分∠AOB,且PD,PE,结论:PE=PD性质定理的逆定理:角的内部到角两边距离相等的
此文档下载收益归作者所有