资源描述:
《二次函数的应用(3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、驶向胜利的彼岸请写出如图所示的抛物线的解析式:课前练习(0,1)(2,4)xyO一座拱桥的示意图如图,当水面宽12m时,桥洞顶部离水面4m。已知桥洞的拱形是抛物线,要求该抛物线的函数解析式,你认为首先要做的工作是什么?如果以水平方向为x轴,取以下三个不同的点为坐标原点:1、点A2、点B3、抛物线的顶点C所得的函数解析式相同吗?请试一试。哪一种取法求得的函数解析式最简单?探究活动:ABC4m12m二次函数与拱桥问题练习市植物园人工湖上有抛物线型拱桥,正常水位时桥下水面宽20米,拱高4米,根据此条件建立如图所示坐标系,得知此时抛物线的
2、解析式为y=-x2+4①在正常水位基础上水位上升h米时,桥下水面宽为d米,求d与h函数关系式。②正常水位时,桥下水深2米,为了保证游船顺利通过,桥下水面宽不得小于18求水深超过多少会影响过往游船在桥下顺利航行?yx(0,4)(10,0)(-10,0)OA(,h)例题:如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。ABCD0.71.62.20.4EFOxy例题:如图,一单杠高2.
3、2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。ABCD0.71.62.20.4EFOxy例题:如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状。一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离。ABCD0.71.62.20.4EFOxyABCD0.71.62.20.4EF解:如图,所以,绳子最低
4、点到地面的距离为0.2米.Oxy以CD所在的直线为X轴,CD的中垂线为Y轴建立直角坐标系,则B(0.8,2.2),F(-0.4,0.7)设y=ax+k,从而有0.64a+k=2.20.16a+k=0.72解得:a=K=0.2258所以,y=x+0.2顶点E(0,0.2)2258练习:如图所示,公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25米,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为美观,要求设计成水流在离OA距离为1米处达到距水面最大高度为2
5、.25米,如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?AO水面CByxAO水面CByx解:以水面OC所的直线为x轴,柱子OA所在的直线为y轴,O为原点建立直角坐标系,设抛物线的解析式为:y=a(x–h)+k,则有1.25=a(0–1)+2.2522解得:a=-1所以,y=-(x–1)+2.252则A、B两点的坐标分别为A(o,1.25)B(1,2.25),令y=0,则-(x–1)+2.25=02解得:x=2.5或x=-0.5(舍去)所以,水池半径至少需要2.5米。思考题:在上面的练习题中,若水池喷出
6、抛物线形状不变,水池的半径为3.5米,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1米)AO水面CByx解:依题意,A(0,1.25),C(3.5,0)设y=-(x-h)+k,则有-(0-h)+k=1.25-(3.5-h)+K=0解得h=—,k≈3.7.所以,此时水流最大高度应达3.7米.222117练习1:一男生推铅球,铅球行进高度y(m)与水平距离x(m)之间的函数关系式是:y=-―x2+―x+―.(1)画出函数图象;(2)观察图象,说出铅球推出的距离;铅球出手时的高度;铅球行进过程中的最高高度.1212335
7、yx0例1.如图,一位运动员在距篮下4m处起跳投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,球达到最大高度3.5m,已知篮筐中心到地面的距离3.05m,问球出手时离地面多高时才能中?球的出手点A的横坐标为-2.5,将x=-2.5代入抛物线表达式得y=2.25,即当出手高度为2.25m时,才能投中。xy2.5m4m3.05ABCO3.5解:建立如图所示的直角坐标系,则球的最高点和球篮的坐标分别为B(0,3.5),C(1.5,3.05).3.5=c3.05=1.52a+c设所求的二次函数的表达式为y=ax2+c.将点B和
8、点C的坐标代入,得解得a=-02c=3.5∴该抛物线的表达式为y=-0.2x2+3.5