2013年各地中考数学压轴题精选一[1].doc

2013年各地中考数学压轴题精选一[1].doc

ID:53416686

大小:537.00 KB

页数:20页

时间:2020-04-03

2013年各地中考数学压轴题精选一[1].doc_第1页
2013年各地中考数学压轴题精选一[1].doc_第2页
2013年各地中考数学压轴题精选一[1].doc_第3页
2013年各地中考数学压轴题精选一[1].doc_第4页
2013年各地中考数学压轴题精选一[1].doc_第5页
资源描述:

《2013年各地中考数学压轴题精选一[1].doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013年各地中考压轴题精选一1、(2013泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值;(3)△OMD为等腰三角形,可能有三种情形,需要分类讨论.解答:解:(1

2、)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能

3、有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).2、(2013•

4、湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,﹣5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.3338333分析:(1)由顶点式,利用待定系数法求出抛物线的解析式;(2)判断直线与圆的位置关系,关键是分析圆的半径r和圆心到直线

5、距离d之间的大小关系.由题意可知d=2,由相似三角形求得r=,因为2>,所以可判定抛物线的对称轴l与⊙C相离;(3)本问是存在性问题.点P有两种情况,分别位于x轴上方与下方,需要分类讨论,注意不要漏解;在求点P坐标时,需要充分利用几何图形(等腰直角三角形)的性质,以及抛物线上点的坐标特征.解答:解:(1)设抛物线解析式为:y=a(x﹣3)2+4,将A(0,﹣5)代入求得:a=﹣1,∴抛物线解析式为y=﹣(x﹣3)2+4=﹣x2+6x﹣5.(2)抛物线的对称轴l与⊙C相离.证明:令y=0,即﹣x2+6x﹣5=0,得x=1或x=5,∴B(1,0),C(5,0).如答图①

6、所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,∴,即,求得⊙C的半径CE=;而点C到对称轴x=3的距离为2,2>,∴抛物线的对称轴l与⊙C相离.(3)存在.理由如下:有两种情况:(I)如答图②所示,点P在x轴上方.∵A(0,﹣5),C(5,0),∴△AOC为等腰直角三角形,∠OCA=45°;∵PC⊥AC,∴∠PCO=45°.过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.设点P坐标为(m,n),则有OF=m,PF=CF=n,OC=OF+CF=m+n=5①又点P在抛物线上,∴n=﹣m2+6m﹣5②联立①②式,解得:m=2或m=5.当m=5时,

7、点F与点C重合,故舍去,∴m=2,∴n=3,∴点P坐标为(2,3);(II)如答图③所示,点P在x轴下方.∵A(0,﹣5),C(5,0),∴△AOC为等腰直角三角形,∠OAC=45°;过点P作PF⊥x轴于点F,∵PA⊥AC,∴∠PAF=45°,即△PAF为等腰直角三角形.设点P坐标为(m,n),则有PF=AF=m,OF=﹣n=OA+AF=5+m,∴m+n=﹣5①又点P在抛物线上,∴n=﹣m2+6m﹣5②联立①②式,解得:m=0或m=7.当m=0时,点F与原点重合,故舍去,∴m=7,∴n=﹣12,∴点P坐标为(7,﹣12).综上所述,存在点P,使△ACP是以AC为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。