资源描述:
《巧用隔板法解排列组合题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、巧用隔板法解排列组合题徐帮利临沂市第二中学解决排列组合问题的方法很多,从解题形式来看,可分为直接法和间接法两种;根据具体问题情景又有:相邻问题“捆绑法”;不相邻问题“插空法”;特殊定位“优限法”(优先排列受限制的位置或元素);同元问题“隔板法”等.这里我们重点看一下“隔板法”.“隔板法”适用于相同元素的分配问题,如投球进盒、名额或指标的分配、部分不定方程的整数解的组数等,解决时通常设计一个问题情景,构造一个隔板模型,将复杂的问题简单化,抽象的问题具体化,从而实现解题的目的.下举例述之.例1.某运输公司有7个车队,每个车队的车多于4辆,现从这7个车队中抽出10辆车,且每个车队至少抽1辆
2、,组成一个运输队,则不同的抽法有()种.A.84B.120C.63D.301解析:此题若使用其它方法,则需要分类,都比较麻烦,若用“隔板法”,则就轻而易举了.首先将10辆车排好,这样形成9个空,从这9个空中选6个,插入隔板,即将这10辆车分成7份,每一种插法对应一种抽法,故共有不同的抽法.所以选A.例2.方程共有多少组正整数解?解析:此题乍看上去,好象思路不太好找,那就只好列举了(麻烦啊!).殊不知,巧构隔板模型,即可化繁为简.将10个完全相同的小球排成一列,形成9个空,从中选3个,插入隔板,将球分成4份,每一种插法所得4份球的各份的数目,分别对应,即为原方程的一组正整数解.故原方程
3、组共有不同的整数解.例3.将10个相同的小球放入编号为1,2,3的三个盒子中,每个盒子中所放的球数不少于其编号数,问不同的放法有多少种?解析:由于条件要求每个盒子中所放的球数不少于其编号数,我们不妨先“找平了”,即先在第1,2,3个盒中各放0,1,2个球.问题即转化为求:将7个相同的小球放入编号为1,2,3的三个盒子中,每个盒中至少1个球的不同放法.将7个小球排成一排,形成6个空,从中选2个,插入隔板,把球分成三组,放入对应的盒子里,每一种插法,对应一种放法,故共有不同的放法.强化训练:1.将10本完全相同的书,分给4名同学,每人至少一本,共有多少种不同的分法?答案:.2.方程共有多
4、少组正整数解?答案: