欢迎来到天天文库
浏览记录
ID:52716564
大小:200.50 KB
页数:5页
时间:2020-03-29
《模糊矩阵与模糊关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、EquationChapter1Section1第2章模糊矩阵与模糊关系2.1模糊矩阵定义及其运算定义:一个矩阵内所有元素均在[0,1]闭区间内取值的矩阵,称为模糊矩阵并、交、补运算:两个模糊矩阵对应元素取大<取小、取补)作为新元素的矩阵,称为它们的并<交、补)运算例:运算性质:注意不满足互补律 2.2模糊矩阵的截矩阵模糊矩阵截矩阵,类似于模糊集的截集例如:的0.7截矩阵为不难看出,模糊矩阵的截矩阵必然是布尔矩阵。2.3 模糊矩阵的合成运算模糊矩阵的合成运算类同于普通矩阵的乘法运算,只需将普通矩阵中的乘
2、法运算和加法运算分别改为取小和取大运算即可。例如:b5E2RGbCAP性质:注意对交运算不满足分配律。2.4 模糊矩阵的转置模糊矩阵的转置:类同于普通矩阵的转置。2.5 模糊关系的定义及其运算1.定义:X与Y直积中一个模糊子集R,称为从X到Y的模糊关系,记为。5/5S=QoR叔侄关系S=QoR丙乙WU推广弟兄关系Q父子关系RRQ甲V2.1模糊关系是普通关系的推广下面研究某一地区人的身高与体重的模糊关系:某地区人身高与体重相互关系构成一个模糊关系XRY40506070801.410.80.20.1
3、01.50.810.80.20.11.60.20.810.80.21.70.10.20.810.81.800.10.20.81人的身高与体重X,Y的论域分别为:它们之间构成的模糊关系表示论域X中的元素和论域Y中的元素对于关系的隶属程度。模糊关系运算并、交、补运算,包含、相等、转置均类同于模糊矩阵。2.6 模糊等价关系模糊关系的性质仅满足自反性、对称性的模糊关系称为模糊等容关系,或模糊相似关系。例:已知,上的模糊关系R为5/5因对角线元素均为1,又有,故R具有自反性、对称性,又所以又具有传递性,故R为一个
4、模糊等价关系。2.7 模糊关系的合成及运算性质1.定义:模糊关系Q与R的合成即为,它们的隶属函数表示为2.性质:结合律,满足分配律,不满足分配律例:已知模糊集合X,Y,Z分别为,,,并设,,,则和分别为,则它们的合成为.2.8 模糊向量的定义及其运算1.模糊向量定义:由在[0,1]闭区间取值的元素构成的向量为模糊向量,其元素为因此一个论域U上的模糊子集,也视为从它的概念名称到论域的一个模糊关系,写成矩阵的形式即为模糊向量。2.模糊向量的笛卡尔乘积。5/5{a}TabXY2.2模糊向量的笛卡儿乘积
5、注意:概念论域,用向量表示,则从论域用表示。的意义表示在不同的论域与的转换关系。例:,,则1.模糊向量的内积U{a}abT{b}2.3模糊向量的内积模糊向量的内积表示同一论域U内两个模糊概念{},{}之间的相关程度。2.模糊向量的外积作为阅读,不讲,易证申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。5/55/5
此文档下载收益归作者所有