开关电源峰值电流模式次谐波振荡研究.doc

开关电源峰值电流模式次谐波振荡研究.doc

ID:52440443

大小:1.16 MB

页数:7页

时间:2020-03-27

开关电源峰值电流模式次谐波振荡研究.doc_第1页
开关电源峰值电流模式次谐波振荡研究.doc_第2页
开关电源峰值电流模式次谐波振荡研究.doc_第3页
开关电源峰值电流模式次谐波振荡研究.doc_第4页
开关电源峰值电流模式次谐波振荡研究.doc_第5页
资源描述:

《开关电源峰值电流模式次谐波振荡研究.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、开关电源峰值电流模式次谐波振荡研究时间:2009-12-1108:52:25来源:信息与电子工程作者:林薇,刘永根,张艳红华侨大学   DC-DC开关电源因体积小,重量轻,效率高,性能稳定等优点在电子、电器设备,家电领域得到了广泛应用,进入了快速发展期。DC-DC开关电源采用功率半导体作为开关,通过控制开关的占空比调整输出电压。其控制电路拓扑分为电流模式和电压模式,电流模式控制因动态反应快、补偿电路简化、增益带宽大、输出电感小和易于均流等优点而被广泛应用。电流模式控制又分为峰值电流控制和平均电流控制,峰值电流的优点为:1)暂态闭环响应比较快,

2、对输入电压的变化和输出负载的变化瞬态响应也比较快;2)控制环易于设计;3)具有简单自动的磁平衡功能;4)具有瞬时峰值电流限流功能等。但是峰值电感电流可能会引起系统出现次谐波振荡,许多文献虽对此进行一定的介绍,但都没有对次谐波振荡进行系统研究,特别是其产生原因和具体的电路实现,本文将对次谐波振荡进行系统研究。1次谐波振荡产生原因   以PWM调制峰值电流模式开关电源为例(如图1所示,并给出了下斜坡补偿结构),对次谐波振荡产生的原因从不同的角度进行详细分析。   对于电流内环控制模式,图2给出了当系统占空比大于50%且电感电流发生微小阶跃△厶时的

3、电感电流变化情况,其中实线为系统正常工作时的电感电流波形,虚线为电感电流实际工作波形。可以看出:1)后一个时钟周期的电感电流误差比前一个周期的电感电流误差大,即电感电流误差信号振荡发散,系统不稳定;2)振荡周期为开关周期的2倍,即振荡频率为开关频率的1/2,这就是次谐波振荡名称的由来。图3给出了当系统占空比大于50%且占空比发生微小阶跃AD时电感电流的变化情况,可以看出系统同样会出现次谐波振荡。而当系统占空比小于50%时,虽然电感电流或占空比的扰动同样会引起电感电流误差信号发生振荡,但这种振荡属于衰减振荡。系统是稳定的。   前面定性分析了次

4、谐波振荡产生的原因,现对其进行定量分析。针对图1,图4给出了占空比扰动引起电感峰值电流误差信号变化情况,其中Vc为误差运放的输出信号,当功率管MO导通即电感电流线性上升时,Vc随之增加,反之当功率管M0关断时,Vc随之减小。从图4可以看出当占空比在连续2个时钟脉冲下存在不对称时,系统将出现次谐波振荡。现推导△Vc与△IL的关系,占空比扰动△D引起电感电流与误差运放输出电压的变化值分别如式(1)和(2)所示,由式(1)和(2)可推导出Vc与△IL的关系如式(3)所示:由于次谐波振荡频率为开关频率的1/2,因此在1/2开关频率处的电压环路增益将直

5、接影响电路的稳定性。现推导图1的电压环路增益,在误差运放输出端叠加斜坡补偿后,设误差电压从△Vc变为△Ve,从而可推出△Vc与△Ve的关系,如式(4)所示。由式(3)和(4)可得式(5),在稳态时可推出式(6),将式(6)代入式(5)消去m1,得式(7):   式中:m为下斜坡斜率;2表示次谐波振荡周期是开关频率的2倍。   从图4可以看出△IL是周期为2T的方波,则第1个次谐波振幅应乘以4/π。假设负载电容为C,则从误差运放输出端到电源输出端的小信号电压增益为设误差运放电压增益为A,则电压外环环路增益为   由环路稳定性条件可知:在l/2开

6、关频率处,环路相位裕度为零,此时若环路增益大于l,系统就会发生次谐波振荡,因此误差运放的最大增益为:       (8)   由式(8)可以明显看出,误差运放的最大增益是占空比D和斜坡补偿斜率m的函数,归一化的误差运放最大增益与D和m的关系如图5所示。可以看出:m=O(无补偿)时,由于运放增益不能小于O,当占空比大于或等于50%时,系统就会出现次谐波振荡;m=一m2/2时,D=100%才出现次谐波振荡,但在实际电路中D<100%时就会出现振荡;m=一m2时,误差运放最大增益与占空比无关。当继续增大m时,对环路的稳定性影响不大,但过补偿会影响系

7、统瞬态响应特性。上文研究了电感电流信号变化波形对次谐波振荡产生的原因及解决办法,现从s域(或频域)角度对其进行更深入的研究。设采样电感电流i,通过采样电阻Rs转化成电压,i(k)表示第k时钟下的电流扰动量,△Ve(k+1)为第k+1时刻的电压控制扰动量,得采样保持的离散时间函数:   由式(10)可知当没有斜坡补偿,且m11,表示有1个极点在单位圆之外,此时电流环不稳定。将H(z)转化为s域传递函数:      式中s表示频率。esT可用PadE可用Pade进行二阶近似:   式中Qs=2/[π(2/α-1)]

8、,即阻尼系数为1/Qs=[π(m1-m2+2m)]/[2(m1+m2)]。式(13)即为电流环传递函数,斜坡补偿前,当m1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。