资源描述:
《MATLAB解方程与函数极值.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5章§5.4解方程与函数极值5.4线性方程组求解5.5非线性方程数值求解5.6常微分方程初值问题的数值解法5.7函数极值5.4线性方程组求解1.直接解法(1)利用左除运算符的直接解法对于线性方程组Ax=b,可以利用左除运算符“”求解:x=Ab例用直接解法求解线性方程组。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';x=Ab(2)利用矩阵的分解求解线性方程组矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有L
2、U分解、QR分解、Cholesky分解,以及Schur分解、Hessenberg分解、奇异分解等。(1)LU分解矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P
3、,使之满足PX=LU。当然矩阵X同样必须是方阵。实现LU分解后,线性方程组Ax=b的解x=U(Lb)或x=U(LPb),这样可以大大提高运算速度。例用LU分解求解线性方程组Ax=b,其中A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[L,U]=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:[L,U,P]=lu(A
4、);x=U(LP*b)(2)QR分解对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb))。例用QR分解求解线性方程组。命令如下:A=[2,
5、1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';[Q,R]=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:[Q,R,E]=qr(A);x=E*(R(Qb))(3)Cholesky(乔莱斯基)分解如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:R=chol(X):产生一个上三角阵R
6、,使R'R=X。若X为非对称正定,则输出一个出错信息。[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。实现Cholesky分解后,线性方程组Ax=b变成R'Rx=b,所以x=R(R'b)。例用Cholesky分解求解线性方程组。命令如下:A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4];b=[13,-9,6,0]';R=chol(A)???E
7、rrorusing==>cholMatrixmustbepositivedefinite命令执行时,出现错误信息,说明A为非正定矩阵。2.迭代解法迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。(1)Jacobi迭代法对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0(i=1,2,…,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为:x=D-1(
8、L+U)x+D-1b与之对应的迭代公式为:x(k+1)=D-1(L+U)x(k)+D-1b这就是Jacobi迭代公式。如果序列{x(k+1)}收敛于x,则x必是方程Ax=b的解。建立Jacobi迭代法的MATLAB函数文件Jacobi.m如下:function[y,n]=jacobi(A,