欢迎来到天天文库
浏览记录
ID:52249295
大小:114.00 KB
页数:7页
时间:2020-03-25
《能得到直角三角形吗教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章 勾股定理2.能得到直角三角形吗一、教学目标(一)知识与技能目标1.理解勾股定理逆定理的具体内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形。(二)过程与方法目标1.经历一般规律的探索过程,发展学生的抽象思维能力;2.经历从实验到验证的过程,发展学生的数学归纳能力。(三)情感与态度目标1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;2.在探索过程中体验成功的喜悦,树立学习的自信心。二、教学重点1、掌握勾股定理的逆定理三、教学难点1、应用勾股定理的逆定理来解决问题;2、运用数形结合的思想,通过观察、讨论认知勾股逆
2、定理四、教学过程设计本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情。效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。第二环节:合作探究内容1:探究下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,2
3、5;③8,15,17;并回答这样两个问题:1.这三组数都满足吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。意图:通过学生的合作探究,得出“若一个三角形的三边长,满足,则这个三角形是直角三角形”这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由“特殊→一般→特殊”的发展规律。效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。从上面的分组实验很容易得
4、出如下结论:如果一个三角形的三边长,满足,那么这个三角形是直角三角形内容2:说理提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:如果一个三角形的三边长,满足,那么这个三角形是直角三角形满足的三个正整数,称为勾股数。注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同
5、呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:小试牛刀内容:1.下列哪几组数据能作为直角三角形的三边长?请说明理由。①9,12,15;②15,36,39;③12,35,36;④12,18,22解答:①②2.一个三角形的三边长分别是,则这个三角形的面积是()A 250B 150 C 200D 不能确定解答:B3.如图1:在中,于,,则是()A 等腰三角形B 锐角三角形C 直角三角形D 钝角三角形解答:C4.将直角三角形的三边扩大相同的倍数后
6、, (图1)得到的三角形是()A 直角三角形B 锐角三角形C 钝角三角形D 不能确定解答:A 意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用效果每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。第四环节:登高望远内容:1.一个零件的形状如图2所示,按规定这个零件中都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?图2图3解答:符合要求,又,2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90°,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?ABC北解答:由题
7、意画出相应的图形AB=240海里,BC=70海里,,AC=250海里;在△ABC中=(250+240)(250-240)=4900==即∴△ABC是Rt△答:船转弯后,是沿正西方向航行的。意图:利用勾股定理逆定理解决实际问题,进一步巩固该定理。效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形(),以便于计算。第五环节:巩固提高内容:1.如图4
此文档下载收益归作者所有