《直线的方程》课件1 (北师大版必修2).ppt

《直线的方程》课件1 (北师大版必修2).ppt

ID:52171451

大小:1.33 MB

页数:37页

时间:2020-04-01

《直线的方程》课件1 (北师大版必修2).ppt_第1页
《直线的方程》课件1 (北师大版必修2).ppt_第2页
《直线的方程》课件1 (北师大版必修2).ppt_第3页
《直线的方程》课件1 (北师大版必修2).ppt_第4页
《直线的方程》课件1 (北师大版必修2).ppt_第5页
资源描述:

《《直线的方程》课件1 (北师大版必修2).ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库

1、7.2直线的方程(1)一.复习回顾直线的方程与方程的直线直的倾斜角和斜率概念辨析7.2直线的方程(1)45斜率公式斜率公式的形式特点及适用范围确定一条直线需要具备几个独立条件6以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程;这条直线叫做这个方程的直线。直线的方程与方程的直线直线的倾斜角和斜率在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角。倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用K表示。斜率公式经过两点p

2、1(x1,y1),p2(x2,y2)的直线的斜率公式:45斜率公式的形式特点及适用范围①斜率公式与两点的顺序无关,即两点的纵坐标和横坐标在公式中的前后次序可同时颠倒;②斜率公式表明,直线对于x轴的倾斜程度,可以通过直线上任意两点坐标表示,而不需求出直线的倾斜角;斜率公式是研究直线方程各种形式的基础,必须熟记,并且会灵活运用;④当x1=x2,y1y2时,直线的倾斜角=900,没有斜率.确定一条直线需要具备几个独立条件61直线经过一个已知点及方向(即斜率);2直线经过两个已知点;如果把直线当作结论,如何根据这些条件求出直线方程?7.2直线的方程若直线L经过点P1(1,2),且斜率为1,求直线L

3、的方程.思考1、直线方程的点斜式和斜截式若直线L经过点p1(x1,y1),且斜率为k,求L的方程?问题1平面上的所有直线是否都可以用点斜式表示?问题2:1、直线方程的点斜式和斜截式讨论:(1)区别方程与方程。(2)直线的斜率k=0时,方程如何?(3)点斜式方程有狭隘性?哪方面?(4)直线的斜率不存在时,方程如何?kxxyy=--11)(11xxkyy-=-不能,因为斜率可能不存在.因此,在具体运用时应根据情况分类讨论,避免遗漏.纵截距:直线L与Y轴交点的纵坐标。横截距:直线L与X轴交点的横坐标。已知直线的斜率为K,与Y轴的交点是P(0,b),求直线L的方程?说明:(1)上述方程是由直线L的斜

4、率和它的纵截距确定的,叫做直线的方程的斜截式。(2)纵截距可以大于0,也可以等于0或小于0。问题3:1、直线方程的点斜式和斜截式(3)斜截式与点斜式存在什么关系?斜截式是点斜式的特殊情况,某些情况下用斜截式比用点斜式更方便.(4)斜截式在形式上与一次函数的表达式一样,但它们之间有什么差别?什么情况下,斜截式方程才是一次函数的表达式.例1:一条直线经过点P1(-2,3),倾斜角=450,求这条直线的方程.例2:写出下列直线的斜截式方程,并画出图形:⑴斜率是1/2,在轴上的距截是-2;⑵斜角是1350,在轴上的距截是3例题①如果直线l的倾斜角为0°,那么经过一点P1(x1,y1)的直线l的方程

5、为。y=y1②如果直线l的倾斜角为90°,那么经过一点P1(x1,y1)的直线l的方程为。x=x1③一条直线经过点P(-2,3),倾斜角为45°,求这条直线的方程,并画出图形。课堂练习(一)写出下列直线的点斜式方程;(1)经过点A(2,5),斜率是4;(2)经过点B(3,-1),斜率是;(3)经过点C(-,2),倾斜角是30°;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°;答案(二)(三)(1)已知直线的点斜式方程是y-2=x-1,那么直线的斜率是______,倾斜角是______(2)已知直线的点斜式方程是那么直线的斜率是________倾斜角是__

6、____,145o150o(3).下面四个直线方程中,可以看作是直线的斜截式方程的是()A.x=3B.y=-5C.2y=xD.x=4y-1B(4)已知直线的斜率k=2,P1(3,5),P2(x2,7),P3(-1,y3)是这条直线上的三点,求x2,y3.33-小结①方程y-y1=k(x-x1)是由直线上一点和直线的斜率确定的,所以叫做直线方程的点斜式;②方程y=kx+b是由直线l的斜率和它在y轴上的截距确定的,所以叫做直线方程的斜截式;③求直线方程应注意分类:(ⅰ)当k存在时,经过点P1(x1,y1)的方程为y-y1=k(x-x1);(ⅱ)当k不存在时,经过点P1(x1,y1)的方程为x=x

7、1。④方程y=kx+b是y-y1=k(x-x1)的特殊情况,其图形是直线,运用它们解决问题的前提是k存在。通过上面的学习和应用,请同学们总结一下,确定一条直线需要几个独立的条件?方程名称已知条件直线方程适应范围点斜式斜截式小结y-y0=k(x-x0)y=kx+b点(x0,y0)斜率k截距b斜率kk存在k存在2一直线过点A(-1,-3),其倾斜角等于直线y=2x倾斜角的两倍,求直线l的方程.1直线y=ax+b(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。