欢迎来到天天文库
浏览记录
ID:51629114
大小:670.50 KB
页数:65页
时间:2020-03-26
《运筹学课件2012 第05章 单纯形法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第五章单纯形法§1单纯形法的基本思路和原理§2单纯形法的表格形式§3求目标函数值最小的线性规划的问题的单纯形表解法§4几种特殊情况1山西大学管理学院范建平博士§1单纯形法的基本思路和原理单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。通过第二章例1的求解来介绍单纯形法:2山西大学管理学院范建平博士第二章例1例1.某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产
2、,已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?ⅠⅡ资源限制设备11300台时原料A21400千克原料B01250千克单位产品获利50元100元3山西大学管理学院范建平博士第二章例1线性规划模型:目标函数:Maxz=50x1+100x2约束条件:s.t.x1+x2≤3002x1+x2≤400x2≤250x1,x2≥04山西大学管理学院范建平博士在加上松弛变量之后我们可得到标准型如下:目标函数:max50x1+100x2约束条件:x1+x2+s1=300,2x
3、1+x2+s2=400,x2+s3=250.xj≥0(j=1,2),sj≥0(j=1,2,3)5山西大学管理学院范建平博士它的系数矩阵其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。基:已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的一个基。基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。非基向量:在A中除了基B之外的一列则称之为基B的非基向量。基变量:与基向量pi相应的变量xi
4、叫基变量,基变量有m个。§1单纯形法的基本思路和原理6山西大学管理学院范建平博士非基变量:与非基向量pj相应的变量xj叫非基变量,非基变量有n-m个。由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。在此例中我们不妨找到了为A的一个基,令这个基的非基变量x1,s2为零。这时约束方程就变为基变量的约束方程:§1单纯形法的基本思路和原理7山西大学管理学院范建平博士x2+s1=300,x2=400,x2+s3=250.求解得到此线性规划的一
5、个基本解:x1=0,x2=400,s1=-100,s2=0,s3=-150由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解是否满足非负的条件。我们把满足非负条件的一个基本解叫做基本可行解,并把这样的基叫做可行基。§1单纯形法的基本思路和原理8山西大学管理学院范建平博士一般来说判断一个基是否是可行基,只有在求出其基本解以后,当其基本解所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行
6、基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我们找到的一个基能保证在求解之后得到的解一定是基本可行解呢?§1单纯形法的基本思路和原理9山西大学管理学院范建平博士由于在线性规划的标准型中要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,那么显然所求得的基本解一定是基本可行解(?)这个单位矩阵或由单位矩阵各列向量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等于零。§1单纯形法的基本思路和原理10山西大学管理学院范建平博士在本例题中
7、我们就找到了一个基是单位矩阵。在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。§1单纯形法的基本思路和原理11山西大学管理学院范建平博士线性规划的基本概念线性规划的基矩阵、基变量、非基变量==目标函数约束条件行列式≠0基矩阵右边常数12山西大学管理学院范建平博士=目标函数约束条件基矩阵右边常数进基变量、离基变量、基变换=基变量13山西大学管理学院范建平博士=进基变
8、量离基变量目标函数约束条件右边常数=14山西大学管理学院范建平博士=目标函数约束条件新的基矩阵
此文档下载收益归作者所有