运筹学电子课件 第5章 单纯形法.ppt

运筹学电子课件 第5章 单纯形法.ppt

ID:51975918

大小:637.50 KB

页数:47页

时间:2020-03-26

运筹学电子课件 第5章  单纯形法.ppt_第1页
运筹学电子课件 第5章  单纯形法.ppt_第2页
运筹学电子课件 第5章  单纯形法.ppt_第3页
运筹学电子课件 第5章  单纯形法.ppt_第4页
运筹学电子课件 第5章  单纯形法.ppt_第5页
资源描述:

《运筹学电子课件 第5章 单纯形法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第五章单纯形法§1单纯形法的基本思路和原理§2单纯形法的表格形式§3求目标函数值最小的线性规划的问题的单纯形表解法§4几种特殊情况1§1单纯形法的基本思路和原理单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。一、找出一个初始基本可行解通过第二章例1的求解来介绍单纯形法:在加上松弛变量之后我们可得到标准型如下:目标函数:maxZ=50x1+100x2约

2、束条件:x1+x2+s1=300,2x1+x2+s2=400,x2+s3=250.xj≥0(j=1,2),sj≥0(j=1,2,3)2它的系数矩阵,其中pj为系数矩阵A第j列的向量。A的秩为3,A的秩m小于此方程组的变量的个数n,为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。基:已知A是约束条件的m×n系数矩阵,其秩为m。若B是A中m×m阶非奇异子矩阵(即可逆矩阵),则称B是线性规划问题中的一个基。基向量:基B中的一列即称为一个基向量。基B中共有m个基向量。非基向量:在A中除了基B之外的一列则称之为基B的非基向量。基变量:与基向

3、量pi相应的变量xi叫基变量,基变量有m个。非基变量:与非基向量pj相应的变量xj叫非基变量,非基变量有n-m个。§1单纯形法的基本思路和原理3由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。在此例中我们不妨找到了为A的一个基,令这个基的非基变量x1,s2为零。这时约束方程就变为基变量的约束方程:§1单纯形法的基本思路和原理4x2+s1=300,x2=400,x2+s3=250.求解得到此线性规划的一个基本解:x1=0,x2=40

4、0,s1=-100,s2=0,s3=-150由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解是否满足非负的条件。我们把满足非负条件的一个基本解叫做基本可行解,并把这样的基叫做可行基。§1单纯形法的基本思路和原理5一般来说判断一个基是否是可行基,只有在求出其基本解以后,当其基本解所有变量的解都是大于等于零,才能断定这个解是基本可行解,这个基是可行基。那么我们能否在求解之前,就找到一个可行基呢?也就是说我

5、们找到的一个基能保证在求解之后得到的解一定是基本可行解呢?由于在线性规划的标准型中要求bj都大于等于零,如果我们能找到一个基是单位矩阵,或者说一个基是由单位矩阵的各列向量所组成(至于各列向量的前后顺序是无关紧要的事)例如,那么显然所求得的基本解一定是基本可行解,这个单位矩阵或由单位矩阵各列向量组成的基一定是可行基。实际上这个基本可行解中的各个变量或等于某个bj或等于零。§1单纯形法的基本思路和原理6在本例题中我们就找到了一个基是单位矩阵。在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始

6、基本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。§1单纯形法的基本思路和原理7二、最优性检验所谓最优性检验就是判断已求得的基本可行解是否是最优解。1.最优性检验的依据——检验数σj一般来说目标函数中既包括基变量,又包括非基变量。现在我们要求只用非基变量来表示目标函数,这只要在约束等式中通过移项等处理就可以用非基变量来表示基变量,然后用非基变量的表示式代替目标函数中基变量,这样目标函数中只含有非基变量了,或者说目标函数中基变量的系数都为零了。此时目标函数中所有变量的系数即为各变

7、量的检验数,把变量xi的检验数记为σi。显然所有基变量的检验数必为零。在本例题中目标函数为50x1+100x2。由于初始可行解中x1,x2为非基变量,所以此目标函数已经用非基变量表示了,不需要再代换出基变量了。这样我们可知σ1=50,σ2=100,σ3=0,σ4=0,σ5=0。§1单纯形法的基本思路和原理8§1单纯形法的基本思路和原理2.最优解判别定理对于求最大目标函数的问题中,对于某个基本可行解,如果所有检验数≤0,则这个基本可行解是最优解。下面我们用通俗的说法来解释最优解判别定理。设用非基变量表示的目标函数为如下形式由于所有的xj的取值范围为大于等

8、于零,当所有的都小于等于零时,可知是一个小于等于零的数,要使z的值最大,显然只有为零。我们把这

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。