2010年江苏高考数学试题详析.doc

2010年江苏高考数学试题详析.doc

ID:50709784

大小:2.58 MB

页数:11页

时间:2020-03-14

2010年江苏高考数学试题详析.doc_第1页
2010年江苏高考数学试题详析.doc_第2页
2010年江苏高考数学试题详析.doc_第3页
2010年江苏高考数学试题详析.doc_第4页
2010年江苏高考数学试题详析.doc_第5页
资源描述:

《2010年江苏高考数学试题详析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2010年江苏高考数学试题一、填空题1、设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=______▲________简析:由集合中元素的互异性有a+2=3或a2+4=3,Þa=1或a2=-1(舍)Þa=12、设复数z满足z(2-3i)=6+4i(其中i为虚数单位),则z的模为______▲________简析:由题意Þz====2iÞ

2、z

3、=23、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_▲__简析:4、某棉纺厂为了了解一批棉花的质量,从中随机抽取

4、了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm。简析:观察频率分布直方图,知有0.06×5×100=30根长度小于20mm5、设函数f(x)=x(ex+ae-x),(x∈R)是偶函数,则实数a=_______▲_________简析:由偶函数Þf(-x)=f(x)Þx(ex+ae-x)=-x(e-x+aex)Þx(ex+e-x)(1+a)=0a=-16、在平面直角坐标系xOy中,双曲线-

5、=1上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是___▲_______简析:法一——直接运用焦半径公式求。因焦半径知识课本中未作介绍,此不重点说明;法二——基本量法求解。由题意知右焦点坐标为F(4,0),M点坐标为(3,±)ÞMF=47、右图是一个算法的流程图,则输出S的值是______▲_______简析:读图知这是计算S=1+21+22+…+2n的一个算法,由S=2n-1³33且n为正整数知n=5时跳出循环,此时,输出S=1+21+22+…+25=63开始S←1n←1S←S+2nS≥33n←n+1否输出S结束是

6、8、函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____简析:对原函数求导得y¢=2x(x>0),据题意,由a1=16=24依次求得a2=8,a3=4,a4=2,a5=1,所以a1+a3+a5=211、在平面直角坐标系xOy中,已知圆x2+y2=4四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是______▲_____简析:若使圆上有且仅有四点到直线12x-5y+c=0距离为1,则圆心到该直线之距应小于1,即<1

7、,解得cÎ(-13,13)2、定义在区间(0,)上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_______▲_____简析:由题意知线段P1P2长即为垂线PP1与y=sinx图像交点的纵坐标。由Þ6cosx=5tanxÞ6cos2x=5sinxÞ6sin2x+5sinx-6=0sinx=ÞP1P2=3、已知函数f(x)=,则满足不等式f(1-x2)>f(2x)的x的范围是____▲____简析:设t=1-x2,当x<

8、-1时,t<0,2x<-2;f(1-x2)=1,f(2x)=1Þf(1-x2)=f(2x);当x>1时,t<0,2x>2,f(1-x2)=1,f(2x)=(2x)2+1>5,显然不满足f(1-x2)>f(2x)当-1£x<0时,t³0,2x<0,所以f(1-x2)=(1-x2)2+1³1,f(2x)=1,Þf(1-x2)>f(2x)(x¹-1);当0£x£1时,t³0,2x³0,所以f(1-x2)=(1-x2)2+1³1,f(2x)=(2x)2+1,由f(1-x2)>f(2x)Þ(1-x2)2+1>(2x)2+1Þx4-6x

9、2+1>0Þ0£x<-1综上,xÎ(-1,-1)4、设实数x,y满足3≤xy2≤8,4≤≤9,则的最大值是_____▲____简析:由题意知x,y均为非0的正实数。由3£xy2£8Þ££,又4££9Þ£·£3,即££3Þ4×£·£9×3Þ£275、在锐角三角形ABC,A、B、C的对边分别为a、b、c,+=6cosC,则+=__▲简析:据正、余弦定理,由已知等式,角化边得3c2=2a2+2b2①,边化角得=6cosC②因为+=tanC(+)=tanC·=③至此,③式还有多种变形,此不赘举,仅以下法解本题。据②式,③式==,又据

10、①式,③式===46、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记S=,则S的最小值是_______▲_______简析:如图,△ABC是边长为1的正△,EF∥BC,四边形BCFE为梯形;设AE=x(0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。