高考数学必修知识讲解余弦定理基础.doc

高考数学必修知识讲解余弦定理基础.doc

ID:50660428

大小:370.00 KB

页数:7页

时间:2020-03-07

高考数学必修知识讲解余弦定理基础.doc_第1页
高考数学必修知识讲解余弦定理基础.doc_第2页
高考数学必修知识讲解余弦定理基础.doc_第3页
高考数学必修知识讲解余弦定理基础.doc_第4页
高考数学必修知识讲解余弦定理基础.doc_第5页
资源描述:

《高考数学必修知识讲解余弦定理基础.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、余弦定理编稿:张希勇   审稿:李霞【学习目标】1.掌握余弦定理的内容及证明余弦定理的向量方法;2.熟记余弦定理及其变形形式,会用余弦定理解决两类基本解三角形问题;3.通过三角函数,余弦定理,向量的数量积等知识间的联系,理解事件之间的联系与辨证统一的关系.【要点梳理】要点一、学过的三角形知识1.中(1)一般约定:中角A、B、C所对的边分别为、、;(2);(3)大边对大角,大角对大边,即;等边对等角,等角对等边,即;(4)两边之和大于第三边,两边之差小于第三边,即,.2.中,,(1),(2)(3),,;,,要点

2、诠释:初中讨论的三角形的边角关系是解三角形的基本依据要点二、余弦定理及其证明三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。即:余弦定理的推导已知:中,,及角,求角的对应边.证明:方法一:向量法(1)锐角中(如图),∵,∴即:(*)同理可得:,要点诠释:(1)推导(*)中,与的夹角应通过平移后得到,即向量的起点应重合,因此与的夹角应为,而不是.(2)钝角三角形情况与锐角三角形相同。(3)对于直角三角形中时,,,也满足余弦定理。方法二:解析几何方法——利用两点间距离公式这里我们只讨

3、论锐角三角形的情形,对于直角三角形和钝角三角形的情形的讨论相同。如图所示建立坐标系.则点,,由、两点间的距离可知,即整理得到.余弦定理的变形公式:要点三、利用余弦定理解三角形1.利用余弦定理可以解决下列两类三角形的问题:①已知三角形的两条边及夹角,求第三条边及其他两个角;②已知三角形的三条边,求其三个角。要点诠释:在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.2.解斜三角形的基本问题:已知条件解法解的情况一边和两角(例如a,B,C)1.利用A+B+C=180°,求A2.应用正弦定理求b,

4、c唯一解两边和夹角(例如a,b,C)1.应用余弦定理求边c2.应用正弦定理求a,b中较短的边所对的角(该角一定是锐角)3.利用A+B+C=180°,求第三个角.唯一解三边(例如a,b,c)法一:1、应用余弦定理先求任意两个角2.用A+B+C=180°,求第三个角法二:1、应用余弦定理求a,b,c中最长边所对的角2、应用正弦定理求余下两个角中的任意一个(该角一定是锐角)3、利用A+B+C=180°,求第三个角唯一解两边及其中一边的对角(例如a,b,A)此类问题首先要讨论解的情况1.应用正弦定理,求另一边的对角(

5、即角B)2、利用A+B+C=180°,求第三个角3、应用正弦或余弦定理求第三边两解、一解或无解要点诠释:对于求解三角形的题目,一般都可有两种思路。但要注意方法的选择,同时要注意对解的讨论,从而舍掉不合理的解。比如下面例2两种方法不同,因此从不同角度来对解进行讨论。此外,有的时候还要对边角关系(例如,大边对大角)进行讨论从而舍掉不合理的解。要点三、利用正、余弦定理判断三角形的形状余弦定理、正弦定理与三角形中的三角变换结合在一起,运用三角函数的变换公式进行三角函数式的变形转化,在三角形中,解决有关含有边角关系的问

6、题时,可以运用余弦定理完成边角互化,通过变形转化成三角形三边之间的关系,判断三角形的形状.判断三角形形状有两条思考路线:其一是化边为角,再进行三角恒等变换,求出三个角之间的关系式;其二是化角为边,再进行代数恒等变换,求出三条边之间的关系式,两种转化主要应用正弦定理和余弦定理.【典型例题】类型一:余弦定理的简单应用:例1.(2016春盐城校级期中)已知中,如果,那么此三角形最大角的余弦值是。【思路点拨】首先依据大边对大角确定要求的角,然后用余弦定理求解.【解析】,由正弦定理可知,令,所以边c对应的角最大【总结升

7、华】1.中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;2.用余弦定理时,要注意公式中的边角位置关系.举一反三:【变式1】(2015广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,,,且b<c,则b=()A.B.2C.D.3【答案】由余弦定理得:a2=b2+c2-2bccosA,所以,即b2-6b+8=0,解得:b=2或b=4,因为b<c,所以b=2。故选:B.【变式2】在中,角所对的三边长分别为,若,求的各角的大小.【答案】设,,,根据余弦定理得:,∵,∴;同理可得;∴【高

8、清课堂:余弦定理376695题一】【变式3】在中,若,则角等于().A.B.C.D.或【答案】∵,∴∵,∴类型二:余弦定理的综合应用例2.(2015陕西高考)的内角所对的边分别为,向量与平行.(I)求;(II)若求的面积.【答案】(I);(II).【思路点拨】(I)先利用可得,再利用正弦定理可得tanA的值,进而可得A的值;(II)由余弦定理可得c的值,进而利用三角形的面积公式可得△ABC的面积.【

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。