资源描述:
《数学教案-代数式.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数学教案-代数式 教学目标 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性. (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式. (3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、
2、不等号.如,,等都是代数式,而,,,等都不是代数式. 如:说出代数式7(a-3)的意义。 分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。 4.书写代数式的注意事项: 数学教案-代数式 教学目标 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; (1)从具体的数到用
3、字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性. (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式. (3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如,,等都是代数式,而,,,等都不是代数式. 如:说出代数式7(a-3)的意义。 分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可
4、之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。 4.书写代数式的注意事项: 数学教案-代数式 教学目标 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性. (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式
5、. (3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如,,等都是代数式,而,,,等都不是代数式. 如:说出代数式7(a-3)的意义。 分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。 4.书写代数式的注意事项: (1)代数式中数字与字母或者字母与字母相乘
6、时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如,应写作或写作,应写作或写作.带分数与字母相乘,应把带分数化成假分数,如应写成.数字与数字相乘一般仍用“×”号. (2)代数式中有除法运算时,一般按照分数的写法来写.如:应写作 (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来. 5.对本节例题的分析: 例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还
7、要考虑乘号可能省略等新规定而已. 6.教法建议 (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。 重点:用字母表示数的意义 2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系; 3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力; 重点:用字母表示数的意义 难点:学会用字母表示数及正确地说出代数式所表示的数量关系
8、一、从学生原有的认知结构提出问题 (通过启发、归纳最后师生共同得出用字母表示数的五种运算律) (1)加法交换律a+b=b+a; (2)乘法交换律a·b=b·a; (3)加法结合律(a+b)+c=a+(b+c); (4)