欢迎来到天天文库
浏览记录
ID:48928939
大小:526.00 KB
页数:6页
时间:2020-02-25
《人教A版数学必修一教案:§3.1.1方程的根与函数的零点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、经典小初高讲义第三章函数的应用一、课程要求本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题.1.通过二次函数的图象,懂得判断一元二次方程根的存在性与根的个数,通过具体的函数例子,了解函数零点与方程根的联系.2.根据函数图象,借助计算器或电脑,学会运用二分法求一些方程的近似解,了解二分法的实
2、际应用,初步体会算法思想.3.借助计算机作图,比较指数函数、对数函数、幂函数的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的关系.4.收集现实生活中普遍使用几种函数模型的案例,体会三种函数模型的应用价值,发展学习应用数学知识解决实际问题的意识.二、编写意图和教学建议1.教材高度重视函数应用的教学,注重知识间的相互联系(比如函数、方程、不等式之间的关系,图象零点与方程根的关系).2.教材通过具体例子介绍二分法,让学生初步体会算法思想,以及从具体到一般的认识规律.此外,还渗透了配方法、
3、待定分数法等数学思想方法.3.教材高度重视信息技术在本章教学中的作用,比如,利用计算机创设问题情境,增加了学生的学习兴趣,利用计算机描绘、比较三种增长模型的变化情况,展示的不同取值而动态变化的规律,形象、生动,利于学生深刻理解.因此,教师要积极开发多媒体教学课件,提高课堂教学效率.4.教材安排了“阅读与思考”的内容,肯在提高学生的数学文化素养,教师应引导学生通过查阅、收集、整理、分析相关材料,增强信息处理的能力,培养探究精神,提高数学素养.5.本章最后安排了实习作业,学生通过作业实践,体会函数模型的建立过
4、程,真实感受数学的应用价值.教师可指导学生分组完成,并认真小结,展示、表扬优秀的作业,并借以充实自己的教学案例.三、教学内容与课时的安排建议全章教学时间约需9课时.3.1函数与方程3课时3.2函数模型及其应用4课时实习作业1课时小结1课时小初高优秀教案经典小初高讲义§3.1.1方程的根与函数的零点一、教学目标1.知识与技能①理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.②培养学生的观察能力.③培养学生的抽象概括能力.2.过程与方法①通过观察二次函数图象,并计算
5、函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法.②让学生归纳整理本节所学知识.3.情感、态度与价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.二、教学重点、难点重点零点的概念及存在性的判定.难点零点的确定.三、学法与教学用具1.学法:学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。2.教学用具:投影仪。四、教学设想(一)创设情景,揭示课题1、提出问题:一元二次方程ax2+bx+c=0(a≠0)的根与二次函数y=ax2
6、+bx+c(a≠0)的图象有什么关系?2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)①方程与函数②方程与函数③方程与函数1.师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.师:上述结论推广到一般的一元二次方程和二次函数又怎样?(二)互动交流研讨新知函数零点的概念:小初高优秀教案经典小初高讲义对于函数,把使成立的实数叫做函数的零点.函数零点的意义:函数的零点就是方程实数根
7、,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.函数零点的求法:求函数的零点:①(代数法)求方程的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.1.师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:①代数法; ②几何法.2.根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论.二次函数的零点:二次函数 .(1)△>0,方程
8、有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.3.零点存在性的探索:(Ⅰ)观察二次函数的图象:①在区间上有零点______;_______,_______,·_____0(<或>=).②在区间上有零点______;·____0(<或>=)
此文档下载收益归作者所有