欢迎来到天天文库
浏览记录
ID:48927122
大小:79.00 KB
页数:4页
时间:2020-02-25
《高中数学 2.3 幂函数教案 新人教A版必修1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、经典小初高讲义2.3幂函数(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P=W元P是W的函数(y=x)(2)如果正方形的边长为a,那么正方形的面积S=a2S是a的函数(y=x2)(3)如果立方体的边长为a,那么立方体的体积V=a3S是a的函数(y=x3)(4)如果一个正方形场地的面积为S,那么正方形的边长a=a是S的函数(y=)(5)如果某人ts内骑车行进1km,那么他骑车的平均速度v=t-1V是t的函数(y=x-1)问题一:以上问题中的函数具有什么共同特征?学生反应:底数都是自变量,指数都是常数.【设计
2、意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征.(二)类比联想,探究新知1.幂函数的定义一般地,函数y=xɑ叫做幂函数(powerfunction),其中x为自变量,ɑ 为常数。注意:幂函数的解析式必须是y=xa的形式,其特征可归纳为“系数为1,只有1项”.(让学生判断y=2x2y=(x+1)2y=x2+1是否为幂函数)【设计意图】加深学生对幂函数定义和呈现形式的理解.2.幂函数的图像与简单性质同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)不妨也找出
3、典型的函数作为代表:y=xy=x2y=x3y=y=x-1让学生自主动手,在同一坐标系中画出这5个函数的图像小初高优秀教案经典小初高讲义问题三:所有图像都过第几象限,所有图像都不过第几象限,为什么?学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义,且函数值都为正.问题四:第一象限内函数图像的变化趋势与指数有什么关系,为什么?学生反应:当指数为正时是增函数,指数为负时是减函数.为什么却讲不清楚.教师讲解:指数为正分为正分数和正整数,正无理数我们高中不做研究,当是正整数时很显然递增,当是正分数时,可以化成根式,很显然当被
4、开方数为正时,被开方数越大,整个根式值越大。而负指数可以化为正指数的倒数,分母递增,整个函数递减.问题五:所有图像都过哪些点,为什么?学生反应:都过点(1,1),因为1的任何指数幂都为1.问题六:对于原点,什么样的幂函数过,什么样的幂函数不过,为什么?学生反应:指数为正过,为负则不过,因为负指数幂可以化成分数形式,分母不能为零,所以在原点没有意义.问题七:图像在第一象限的位置关系是什么样子的,为什么?学生反应:当01时,指数大的图像在上方,对于原因大部分学生不能很快反应过来.教师活动:在05、个x值,例如a,肯定有o1时,指数大的函数值就大.【总结】小初高优秀教案经典小初高讲义幂函数不同于指数函数和对数函数拥有共同的定义域,所以幂函数的性质不可能全部总结清楚,但我们在探索性质的过程中知道了研究方法:指数是分数则化为根式,指数为负数则化为分式,这样对于定义域、值域、单调性、奇偶性都可以很容易看出来,不过要严格判断单调性和奇偶性还要用定义进行证明,接下来不看图像很快得出5个幂函数的相关性质:函数性质y=xy=x2y=x3y=y=x-1定义域RRR[0,+∞){x6、︱x≠0}值域R[0,+∞)R[0,+∞){y︱y≠0}单调性增(-∞,0)增[0,+∞)减增增(-∞,0)减(0+∞)减奇偶性奇偶奇非奇非偶奇公共点(1,1)【设计意图】通过创设问题情境,激发学生的思维,并在新知探究的过程中自然形成一般方法的呈现,使学生易于领悟和接受.(三)新知应用【性质证明】证明幂函数y=在[0,+∞)上是增函数证明:教师活动:强调教材中此例题的地位和作用:(1)复习定义证明单调性的过程.(2)幂函数的单调性很容易观察,强调严格判断的时候要用单调性进行证明。(3)幂函数的单调性很容易观察,以至于在证明中直接用到了单调性7、,如直接判断【例】比较下列各组数种两个值的大小(1)(2)(3)解::(1)y=5.2x是增函数,∵0.1<0.2 ∴5.20.1<5.20.2(2)y=x0.9在(0,+∞)内是增函数∵3.2<3.7∴3.20.9<3.70.9(3)1.72.5<1.82.5<1.83.5小初高优秀教案经典小初高讲义【练习】已知一个函数是幂函数,且在区间(0,+∞)内是减函数,求满足条件的实数m的集合。解:依题意,得解方程,得m=2或m=-1检验:当m=2时,函数为符合题意.当m=-1时,不合题意,舍去.所以m=2【设计意图】增强学生对新知的应用能力,从8、而达到能力的转型和对知识理解的深化.(四)课堂小结,归纳提升(1)知识总结:回顾幂函数的定义和一些简单的幂函数性质.(2)思想方法:主要涉及到了归纳总结的思想,回顾研究一般具体幂
5、个x值,例如a,肯定有o1时,指数大的函数值就大.【总结】小初高优秀教案经典小初高讲义幂函数不同于指数函数和对数函数拥有共同的定义域,所以幂函数的性质不可能全部总结清楚,但我们在探索性质的过程中知道了研究方法:指数是分数则化为根式,指数为负数则化为分式,这样对于定义域、值域、单调性、奇偶性都可以很容易看出来,不过要严格判断单调性和奇偶性还要用定义进行证明,接下来不看图像很快得出5个幂函数的相关性质:函数性质y=xy=x2y=x3y=y=x-1定义域RRR[0,+∞){x
6、︱x≠0}值域R[0,+∞)R[0,+∞){y︱y≠0}单调性增(-∞,0)增[0,+∞)减增增(-∞,0)减(0+∞)减奇偶性奇偶奇非奇非偶奇公共点(1,1)【设计意图】通过创设问题情境,激发学生的思维,并在新知探究的过程中自然形成一般方法的呈现,使学生易于领悟和接受.(三)新知应用【性质证明】证明幂函数y=在[0,+∞)上是增函数证明:教师活动:强调教材中此例题的地位和作用:(1)复习定义证明单调性的过程.(2)幂函数的单调性很容易观察,强调严格判断的时候要用单调性进行证明。(3)幂函数的单调性很容易观察,以至于在证明中直接用到了单调性
7、,如直接判断【例】比较下列各组数种两个值的大小(1)(2)(3)解::(1)y=5.2x是增函数,∵0.1<0.2 ∴5.20.1<5.20.2(2)y=x0.9在(0,+∞)内是增函数∵3.2<3.7∴3.20.9<3.70.9(3)1.72.5<1.82.5<1.83.5小初高优秀教案经典小初高讲义【练习】已知一个函数是幂函数,且在区间(0,+∞)内是减函数,求满足条件的实数m的集合。解:依题意,得解方程,得m=2或m=-1检验:当m=2时,函数为符合题意.当m=-1时,不合题意,舍去.所以m=2【设计意图】增强学生对新知的应用能力,从
8、而达到能力的转型和对知识理解的深化.(四)课堂小结,归纳提升(1)知识总结:回顾幂函数的定义和一些简单的幂函数性质.(2)思想方法:主要涉及到了归纳总结的思想,回顾研究一般具体幂
此文档下载收益归作者所有