欢迎来到天天文库
浏览记录
ID:48763212
大小:672.50 KB
页数:28页
时间:2020-01-22
《正弦定理课件.ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一章:解三角形1.1.1正弦定理1.问题的引入:.(1)在我国古代就有嫦娥奔月的神话故事.明月高悬,我们仰望夜空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?(2)设A,B两点在河的两岸,只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?AB我们这一节所学习的内容就是解决这些问题的有力工具.回忆一下直角三角形的边角关系?ABCcba两等式间有联系吗?思考:对一般的三角形,这个结论还能成立吗?2.定理的推导1.1.1正弦定理(1)当是锐角三角形时,结论是否还成立呢?D如图:作AB上的高是CD,根椐三角形的定义,得
2、到1.1.1正弦定理BACabcE(2)当是钝角三角形时,以上等式是否仍然成立?BACbca1.1.1正弦定理D(1)文字叙述正弦定理:在一个三角形中,各边和它所对角的正弦的比相等.(2)结构特点(3)方程的观点正弦定理实际上是已知其中三个,求另一个.能否运用向量的方法来证明正弦定理呢?和谐美、对称美.正弦定理:剖析定理、加深理解1、A+B+C=π2、大角对大边,大边对大角剖析定理、加深理解3、正弦定理可以解决三角形中的问题:①已知两角和一边,求其他角和边②已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角剖析定理、加深理解4、一般地,
3、把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫解三角形剖析定理、加深理解5、正弦定理的变形形式6、正弦定理,可以用来判断三角形的形状,其主要功能是实现三角形边角关系的转化例1在已知,解三角形.通过例题你发现了什么一般性结论吗?小结:知道三角形的两个内角和任何一边,利用正弦定理可以求出三角形中的其它元素。1.1.1正弦定理3.定理的应用举例变式:若将a=2改为c=2,结果如何?例2已知a=16,b=,A=30°.解三角形已知两边和其中一边的对角,求其他边和角解:由正弦定理得所以B=60°,或B
4、=120°当时B=60°C=90°C=30°当B=120°时B16300ABC1631683变式:a=30,b=26,A=30°,解三角形300ABC2630解:由正弦定理得所以B=25.70,或B=1800-25.70=154.30由于154.30+300>1800故B只有一解 (如图)C=124.30,小结:已知两边和其中一边的对角,可以求出三角形的其他的边和角。4.基础练习题1.1.1正弦定理B=300无解5.探究课题引入时问题(2)的解决方法ABCbc1.1.1正弦定理正弦定理主要应用(1)已知两角及任意一边,可以求出其他两边和另一角;(2
5、)已知两边和其中一边的对角,可以求出三角形的其他的边和角。(此时可能有一解、二解、无解)1.1.1正弦定理小结:课后探究:那么这个k值是什么呢?你能用一个和三角形有关的量来表示吗?作业:P102(1)你还可以用其它方法证明正弦定理吗?(2)°······在例2中,将已知条件改为以下几种情况,不计算判断有几组解?60°ABCb(3)b=20,A=60°,a=15.(1)b=20,A=60°,a=;(2)b=20,A=60°,a=;(3)b=20,A=60°,a=15.60°20AC(1)b=20,A=60°,a=;60°20√3A20BC(2)b=2
6、0,A=60°,a=;BC60°A20一解一解无解ab无解一解两解一解无解一解AC条件图形解的个数总结ACBBCAACDB2B1CADABCD谢谢光临指导!题型1:解三角形正弦定理的性质题型2:性质的应用题型3:判断三角形形状题型4:三角形的面积作业:
此文档下载收益归作者所有