资源描述:
《数学北师大版九年级下册二次函数复习教学设计.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二次函数复习课1、二次函数的定义2.当m_=2_时,函数y=(m+1)χ-2χ+1是二次函数?定义:y=ax²+bx+c(a、b、c是常数,a≠0)定义要点:①a≠0②最高次数为2③代数式一定是整式练习:1、y=-x²,y=2x²-2/x,y=100-5x²,y=3x²-2x³+5,其中是二次函数的有__2__个。2、二次函数的图像及性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)由a,b和c的符号确定由a,b和c的符号确定a>0,开口向上a
2、<0,开口向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.xy0xy0例2:(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y<0?x为何值时,y>0?已知二次函数0•(-1,-2)••(0,-–)••(-3,0)(1
3、,0)32yx由图象可知:当x<-3或x>1时,y>0当-34、(a≠0)3、求抛物线解析式的三种方法练习:根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二
5、次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定开口向上a>0开口向下a<0(2)C的符号:由抛物线与y轴的交点位置确定.交点在x轴上方c>0交点在x轴下方c<0经过坐标原点c=0(3)b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(
6、4)b2-4ac的符号:由抛物线与x轴的交点个数确定与x轴有两个交点b2-4ac>0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac<0xy1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为( )A、a<0,b>0,c>0B、a<0,b>0,c<0C、a<0,b<0,c>0D、a<0,b<0,c<0xy2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为( )A、a>0,b>0,c=0B、a<0,b>0,c=0C、a<0,b<0,c<
7、0D、a>0,b<0,c=0xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c、△的符号为( )A、a>0,b=0,c>0,△>0B、a<0,b>0,c<0,△=0C、a>0,b=0,c<0,△>0D、a<0,b=0,c<0,△<0BACooo练习:熟练掌握a,b,c,△与抛物线图象的关系(上正、下负)(左同、右异)·c4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a0,b0,c0.xyo<=<5.抛物线y=ax2+bx+c
8、(a≠0)的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a0,b0,c0.xyo>=6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想)xy四>5、抛物线的平移左加右减,上加下减练习⑴二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。⑵二次函数y=