4、(0,)
5、uθ<+∞,0≤θ≤π.令u(,)ρθ=R()(),ρΦθ经过分离变量后得⎧Φ+ΦΦ+′′+λΦ=0,00,0,00<θ<π,⎪⎧⎪⎧⎪⎧⎪⎧ρ2R′′+ρR′−λR=0,⎨⎨⎩Φ((()0)=Φ(()π()=0,⎪⎩⎪⎩⎪⎩R(((
6、)0)<+∞<<+∞+∞.2特征值λn=n,n=1,2,...特征函数Φn((()θ)=bnsinssininnθ,n=1,2,...nR()ρ=cρ,n=1,2,...nn∞nu((ρθ,))=∑∑dnρsinnθ,n=1将ua(,)θ=Tθπ(−θ)代入上式,∞n∑∑dansinssininnθ=Tθπ(−θ)n=1ππn2dasinssininnθθd=Tθπ(−θ)sinnθθdn∫∫0∫∫04Td=(1cos((1cos1cos−nπ),nn3πan∞n4Tρnu((ρθ,)=)∑∑n3[1(1)]sin−−nθ.πn=1an极坐标系下的拉普拉斯方程
7、的表达式⎧x=ρcosθ⎧1=∂ρ⋅cosθ−ρ∂θ⋅sinθ⎨⎪⎪⎪⎪⎪⎪∂x∂x⎩y=ρsinssininθ⎨∂ρ∂θ⎪0=⋅sinθ+ρcosθ⎪⎩⎪⎩⎪⎩⎪⎩∂x∂x∂ρ∂θ−sinθ=cos,ccos,os,θ=uu(,)(,)ρθρθ∂x∂xρ22∂ρ∂θcosθ∂u∂u同理=sin,ssin,in,θ=已知+=0∂y∂yρ22∂x∂y∂u∂u∂ρ∂u∂θ∂u∂usinθ=⋅+⋅=cosccososθ−⋅∂x∂ρ∂x∂θ∂x∂ρ∂θρ222∂u⎛∂u∂ρ∂u∂θ⎞∂u∂θ=⎜⋅+⋅⎟cosccososθ+⋅−(sin)θ⋅22∂x⎝∂ρ∂x∂∂ρθ
8、∂x⎠∂ρ∂x22⎛∂u∂ρ∂u∂θ⎞sinssininθ−⎜⋅+⋅⎟⋅2⎝∂∂∂∂∂ρθ∂∂x∂θ∂x⎠ρ∂u∂usinθcosccososθ−⋅∂ρ∂θρ∂u⎛1∂θsinθ∂ρ⎞−⎜cosccososθ⋅−⋅⎟2∂θ⎝ρ∂xρ∂x⎠222∂u∂u∂u同理=........,......,代入+=0222∂y∂x∂y22∂u1∂u1∂u++=0222∂ρρρ∂ρ∂θ练习求解定解问题⎧∂2u∂2u2π2π2⎪=a+sinssininxcosx,00;22⎪∂t∂xll⎪⎨u
9、=3,u
10、=6;t>0x=0xl=⎪⎛x⎞∂u4π⎪u
11、=31+,
12、=
13、sinx,0≤x≤l.t=0⎜⎟t=0⎪⎩⎪⎩⎪⎩⎪⎩⎝l⎠∂tl提示:uxt((,)=)=vxt((,)+)wx((()),其中w(x)满足⎧22π2π⎪aw''''''((()x)+sinxcosx=0⎨ll⎪⎩⎪⎩⎪⎩⎪⎩w((()0)=3,wl(())(=6例在矩形域内求下面定解问题P54(16)PP54(16)54(16)⎧∂2u∂2u⎪+=fxy(,),0((,),0,),014、xuxb((,))=ψ2(),0x≤x