欢迎来到天天文库
浏览记录
ID:47923223
大小:164.50 KB
页数:7页
时间:2019-11-01
《浙江高考数学总复习第三章专题研究课一高考中函数与导数问题的热点题型学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题研究课一高考中函数与导数问题的热点题型高考导航 函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类题型,常涉及的问题:研究函数的性质(如求单调区间、求极值、最值),研究函数的零点(或方程的根、曲线的交点),研究不等式.热点一 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值问题,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】(2015·全国Ⅱ卷)已知函数f(x)=lnx+a(1-x).(1)讨论f(x)的单调性;(2)当f
2、(x)有最大值,且最大值大于2a-2时,求实数a的取值范围.解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.若a>0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0,所以f(x)在上单调递增,在上单调递减.综上,知当a≤0时,f(x)在(0,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=处取得最大值,最大值为f=ln+a=-lna+
3、a-1.因此f>2a-2等价于lna+a-1<0.令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,实数a的取值范围是(0,1).探究提高 (1)研究函数的性质通常转化为对函数单调性的讨论,-7-讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的
4、取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解lna+a-1<0,则需要构造函数来解.【训练1】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解 (1)当a=2时,f(x)=(-x2+2x)ex,所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.令f′(x)>0,即(-x2+2)ex>0,因为ex>0,所以-x2+2>0,解得-5、以函数f(x)的单调递增区间是(-,).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)ex+(-x2+ax)ex=[-x2+(a-2)x+a]ex,所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.因为ex>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥==(x+1)-对x∈(-1,1)都成立.令y=(x+1)-,则y′=1+>0.所以y=(x+1)-在(-1,1)上单调递增,所以y<(1+1)-=.即a≥.因6、此实数a的取值范围是.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,-7-这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】(2017·杭州调研)已知函数f(x)=axsinx-(a>0),且在上的最大值为.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.解 (1)由已知,得f′(x)=a(sinx+xcosx),且a>0.当x∈时,有sin7、x+xcosx>0,从而f′(x)>0,f(x)在上是增函数,又f(x)在上的图象是连续不断的,故f(x)在上的最大值为f,即a-=,解得a=1.综上所述得f(x)=xsinx-.(2)f(x)在(0,π)内有且只有两个零点.证明如下:由(1)知,f(x)=xsinx-,从而f(0)=-<0,f=>0.又f(x)在上的图象是连续不断的,所以f(x)在内至少存在一个零点.又由(1)知f(x)在上单调递增,故f(x)在内有且只有一个零点.当x∈时,令g(x)=f′(x)=sinx+xcosx.由g=1>0,g(π)=-π<0,8、且g(x)在上的图象是连续不断的,故存在m∈-7-,使得g(m)=0.由g′(x)=2cosx-xsinx,知x∈时,有g′(x)<0,从而g(x)在内单调递减.①当x∈时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在内单调递增,故当x∈时,f(x)≥f=>0,故f(x)在上无零点;②当x∈
5、以函数f(x)的单调递增区间是(-,).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)ex+(-x2+ax)ex=[-x2+(a-2)x+a]ex,所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.因为ex>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥==(x+1)-对x∈(-1,1)都成立.令y=(x+1)-,则y′=1+>0.所以y=(x+1)-在(-1,1)上单调递增,所以y<(1+1)-=.即a≥.因
6、此实数a的取值范围是.热点二 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,-7-这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】(2017·杭州调研)已知函数f(x)=axsinx-(a>0),且在上的最大值为.(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.解 (1)由已知,得f′(x)=a(sinx+xcosx),且a>0.当x∈时,有sin
7、x+xcosx>0,从而f′(x)>0,f(x)在上是增函数,又f(x)在上的图象是连续不断的,故f(x)在上的最大值为f,即a-=,解得a=1.综上所述得f(x)=xsinx-.(2)f(x)在(0,π)内有且只有两个零点.证明如下:由(1)知,f(x)=xsinx-,从而f(0)=-<0,f=>0.又f(x)在上的图象是连续不断的,所以f(x)在内至少存在一个零点.又由(1)知f(x)在上单调递增,故f(x)在内有且只有一个零点.当x∈时,令g(x)=f′(x)=sinx+xcosx.由g=1>0,g(π)=-π<0,
8、且g(x)在上的图象是连续不断的,故存在m∈-7-,使得g(m)=0.由g′(x)=2cosx-xsinx,知x∈时,有g′(x)<0,从而g(x)在内单调递减.①当x∈时,g(x)>g(m)=0,即f′(x)>0,从而f(x)在内单调递增,故当x∈时,f(x)≥f=>0,故f(x)在上无零点;②当x∈
此文档下载收益归作者所有