欢迎来到天天文库
浏览记录
ID:47858222
大小:4.01 MB
页数:37页
时间:2019-12-01
《初一升初二暑假衔接班数学教材共15讲》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、目录第一部分——温故知新专题一整式运算·················································1专题二乘法公式·················································3专题三平行线的性质与判定·······································9专题四三角形的基本性质·········································11专题五全等三角形·····························
2、··················14专题六如何做几何证明题·········································17专题七轴对称···················································22第二部分——提前学习专题一勾股定理·················································25专题二平方根与算数平方根·······································29专题三立方根·········
3、··········································32专题四平方根与立方根的应用····································35专题五实数的分类···············································39专题六最简二次根式及分母有理化··································42专题七非负数的性质及应用·······································46专题八二次根式的复习···
4、········································49--0--第一部分——温故知新专题一整式运算1.由数字与字母组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式中的叫做单项式的系数单项式中所有字母的叫做单项式的次数2.几个单项式的和叫做多项式多项式中叫做这个多项式的次数3.单项式和多项式统称为4.整式加减实质就是后5.同底数幂乘法法则:(m.n都是正整数);逆运算6.幂的乘方法则:(m.n都是正整数);逆运算7.积的乘方法则:(n为正整数);逆运算8.同底数幂除法法则:(a≠0,m.n都是正
5、整数);逆运算9.零指数的意义:;10.负指数的意义:11.整式乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式12.整式除法:(1)单项式除以单项式;(2)多项式除以单项式知识点1.单项式多项式的相关概念归纳:在准确记忆基本概念的基础上,加强对概念的理解,并灵活的运用例1.下列说法正确的是()A.没有加减运算的式子叫单项式B.的系数是C.单项式-1的次数是0D.是二次三项式例2.如果多项式是关于x的二次二项式,求m,n的值知识点2.整式加减归纳:正确掌握去括号的法则,合并同类项的法则例3.多项式中不含x
6、y项,求k的值知识点3.幂的运算-35-归纳:幂的运算一般情况下,考题的类型均以运算法则的逆运算为主,加强对幂的逆运算的练习,是解决这类题型的核心方法。例4.已知求(1)的值(2)的值例5.计算(1)(2)知识点4.整式的混合运算归纳:整式的乘法法则和除法法则是整式运算的依据,注意运算时灵活运用法则。例6.先化简,再求值:,其中知识点5.运用幂的法则比较大小归纳:根据幂的运算法则,可以将比较大小的题分为两种:①化为同底数比较;②化为同指数比较例7.比较大小(1)(2)1.若A是五次多项式,B是三次多项式,则A+B一定是()A.五次整
7、式B.八次多项式C.三次多项式D.次数不能确定2.已知,,,则、、的大小关系是()A.>> B.>>C.<<D.>>3.若,,则等于()A.-5B.-3C.-1D.14.下列叙述中,正确的是()A.单项式的系数是0,次数是3B.a、π、0、22都是单项式C.多项式是六次三项式D.是二次二项式5.下列说法正确的是()A.任何一个数的0次方都是1B.多项式与多项式的和是多项式C.单项式与单项式的和是多项式D.多项式至少有两项6.下列计算:①②③④⑤⑥正确的有()A.2个B.3个C.4个D.5个7.在的积中,不想含有项,则必须为.8.若中
8、不含有项,则,.9.比较大小(1)(2)(3)-35-10.计算(1)(2)专题二乘法公式1.平方差公式:平方差公式的一些变形:(1)位置变化:(2)系数变化:(3)指数变化:(4)符号变化:=(5)数字变化:98×102=(100-
此文档下载收益归作者所有