2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理

2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理

ID:47819997

大小:738.50 KB

页数:15页

时间:2019-11-16

2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理_第1页
2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理_第2页
2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理_第3页
2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理_第4页
2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理_第5页
资源描述:

《2019届高考数学二轮复习 专题三 立体几何 第1讲 空间几何体的三视图、表面积和体积学案 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1讲 空间几何体的三视图、表面积和体积高考定位 1.三视图的识别和简单应用;2.简单几何体的表面积与体积计算,主要以选择题、填空题的形式呈现,在解答题中,有时与空间线、面位置证明相结合,面积与体积的计算作为其中的一问.真题感悟1.(2018·全国Ⅲ卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(  )解析 由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.答案 A2.(2018·全国Ⅰ

2、卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )A.12πB.12πC.8πD.10π解析 因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2,底面圆的直径为2.所以S表面积=2×π×()2+2π××2=12π.答案 B3.(2018·天津卷)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.解析 连接AD1,CD1,B1A,B1C,AC,因为E,H分别为

3、AD1,CD1的中点,所以EH∥AC,EH=AC.因为F,G分别为B1A,B1C的中点,所以FG∥AC,FG=AC.所以EH∥FG,EH=FG,所以四边形EHGF为平行四边形,又EG=HF,EH=HG,所以四边形EHGF为正方形.又点M到平面EHGF的距离为,所以四棱锥M-EFGH的体积为××=.答案 4.(2017·全国Ⅰ卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.解析 如图,连接OA,OB,因为SA=AC,SB=BC,SC为球O的直径,所以O

4、A⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,且OA⊂平面SAC,所以OA⊥平面SBC.设球的半径为r,则OA=OB=r,SC=2r,所以VA-SBC=×S△SBC×OA=××2r×r×r=r3,所以r3=9⇒r=3,所以球的表面积为4πr2=36π.答案 36π考点整合1.空间几何体的三视图(1)几何体的摆放位置不同,其三视图也不同,需要注意长对正、高平齐、宽相等.(2)由三视图还原几何体:一般先从俯视图确定底面,再利用正视图与侧视图确定几何体.2.空间几何体的两组常用公式(1)柱体、锥体、台体的表面积公式:①圆柱的表面积S=2πr(r+l);②

5、圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r′2+r2+r′l+rl);④球的表面积S=4πR2.(2)柱体、锥体和球的体积公式:①V柱体=Sh(S为底面面积,h为高);②V锥体=Sh(S为底面面积,h为高);③V球=πR3.热点一 空间几何体的三视图与直观图【例1】(1)(2018·兰州模拟)中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知某“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为(  )A.18   B.18C.18   D.(2)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在

6、正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )A.2B.2C.3D.2解析 (1)在俯视图Rt△ABC中,作AH⊥BC交于H.由三视图的意义,则BH=6,HC=3,根据射影定理,AH2=BH·HC,∴AH=3.易知该“堑堵”的侧视图是矩形,长为6,宽为AH=3.故侧视图的面积S=6×3=18.(2)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4.则从M到N的路径中,最短路径的长度为==2.答案 (1)C (2)B探

7、究提高 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.【训练1】(1)如图,在底面边长为1,高为2的正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之和为(  )A.1B.2C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。