2019高考数学 专题五 导数的应用精准培优专练 文

2019高考数学 专题五 导数的应用精准培优专练 文

ID:47805883

大小:113.30 KB

页数:9页

时间:2019-11-15

2019高考数学 专题五 导数的应用精准培优专练 文_第1页
2019高考数学 专题五 导数的应用精准培优专练 文_第2页
2019高考数学 专题五 导数的应用精准培优专练 文_第3页
2019高考数学 专题五 导数的应用精准培优专练 文_第4页
2019高考数学 专题五 导数的应用精准培优专练 文_第5页
资源描述:

《2019高考数学 专题五 导数的应用精准培优专练 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、培优点五导数的应用1.利用导数判断单调性例1:求函数的单调区间【答案】见解析【解析】第一步:先确定定义域,定义域为,第二步:求导:,第三步:令,即,第四步:处理恒正恒负的因式,可得,第五步:求解,列出表格2.函数的极值例2:求函数的极值.【答案】的极大值为,无极小值【解析】令解得:,的单调区间为:的极大值为,无极小值.3.利用导数判断函数的最值例3:已知函数在区间上取得最小值4,则___________.【答案】【解析】思路一:函数的定义域为,.当时,,当时,,为增函数,所以,,矛盾舍去;当时,若,,为减函数,若,,为增函数,所以为极小值,也是最小值;

2、①当,即时,在上单调递增,所以,所以(矛盾);②当,即时,在上单调递减,,所以;③当,即时,在上的最小值为,此时(矛盾).综上.思路二:,令导数,考虑最小值点只有可能在边界点与极值点处取得,因此可假设,,分别为函数的最小值点,求出后再检验即可.对点增分集训一、单选题1.函数的单调递减区间为()A.B.C.D.【答案】A【解析】函数的导数为,令,得,∴结合函数的定义域,得当时,函数为单调减函数.因此,函数的单调递减区间是.故选A.2.若是函数的极值点,则()A.有极大值B.有极小值C.有极大值0D.有极小值0【答案】A【解析】因为是函数的极值点,所以,,

3、,.当时,;当时,,因此有极大值,故选A.3.已知函数在上单调递减,且在区间上既有最大值,又有最小值,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为函数在上单调递减,所以对于一切恒成立,得,,又因为在区间上既有最大值,又有最小值,所以,可知在上有零点,也就是极值点,即有解,在上解得,可得,,故选C.4.函数是上的单调函数,则的范围是()A.B.C.D.【答案】C【解析】若函数是上的单调函数,只需恒成立,即,.故选C.5.遇见你的那一刻,我的心电图就如函数的图象大致为()A.B.C.D.【答案】A【解析】由,其定义域为,即,,则函数为奇函数

4、,故排除C、D,,则函数在定义域内单调递减,排除B,故选A.6.函数在内存在极值点,则()A.B.C.或D.或【答案】A【解析】若函数在无极值点,则或在恒成立.①当在恒成立时,时,,得;时,,得;②当在恒成立时,则且,得;综上,无极值时或.∴在在存在极值.故选A.7.已知,,若函数在区间上单调递减,则实数的取值范围是()A.或B.或C.或D.或【答案】D【解析】因为,函数在区间上单调递减,所以在区间上恒成立,只需,即解得或,故选D.8.函数在定义域内可导,其图像如图所示.记的导函数为,则不等式的解集为()A.B.C.D.【答案】A【解析】由图象知和上递

5、减,因此的解集为.故选A.9.设函数,则()A.在区间,内均有零点B.在区间,内均无零点C.在区间内有零点,在区间内无零点D.在区间内无零点,在区间内有零点【答案】D【解析】的定义域为,在单调递减,单调递增,,当在区间上时,在其上单调,,,故在区间上无零点,当在区间上时,在其上单调,,,故在区间上有零点.故选D.10.若函数既有极大值又有极小值,则实数的取值范围为()A.B.C.或D.或【答案】D【解析】,,函数既有极大值又有极小值,有两个不等的实数根,,,则或,故选D.11.已知函数的两个极值点分别在与内,则的取值范围是()A.B.C.D.【答案】A

6、【解析】由函数,求导,的两个极值点分别在区间与内,由的两个根分别在区间与内,,令,转化为在约束条件为时,求的取值范围,可行域如下阴影(不包括边界),目标函数转化为,由图可知,在处取得最大值,在处取得最小值,可行域不包含边界,的取值范围.本题选择A选项.12.设函数在区间上的导函数为,在区间上的导函数为,若在区间上,则称函数在区间上为“凹函数”,已知在区间上为“凹函数”,则实数的取值范围为()A.B.C.D.【答案】D【解析】∵,∴,∴,∵函数在区间上为“凹函数”∴,∴在上恒成立,即在上恒成立.∵在上为单调增函数,∴,∴,故选D.二、填空题13.函数在区

7、间上的最大值是___________.【答案】8【解析】,已知,当或时,,在该区间是增函数,当时,,在该区间是减函数,故函数在处取极大值,,又,故的最大值是8.14.若函数在,上都是单调增函数,则实数的取值集合是______.【答案】【解析】,,函数在,上都是单调增函数,则,即,解得,,即,解得,则实数的取值集合是,故答案为.15.函数在内不存在极值点,则的取值范围是___________.【答案】或【解析】函数在内不存在极值点在内单调函数或在内恒成立,由在内恒成立,,即,同理可得,故答案为或.16.已知函数,①当时,有最大值;②对于任意的,函数是上的

8、增函数;③对于任意的,函数一定存在最小值;④对于任意的,都有.其中正确结论的序号是______

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。