欢迎来到天天文库
浏览记录
ID:47685774
大小:27.31 KB
页数:7页
时间:2019-10-22
《数学建模对大学生科技创新的影响》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数学建模对大学生科技创新的影响加强大学生的创新精神和创新思维能力的培养,已是世界各国教学改革的共同趋势,也是我国实现“科教兴国”战略的基本要求。新的课程改革强调数学与实际生活的联系,多年来的教育实践证明,数学建模的教学在大学生的创新教学中的地位和意义已是举足轻重。学校可以通过数学建模,培养学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力以及交流与合作的能力。数学教育本质上是一种素质教育,从开始受教育,就接触数学学科,数学的重要性可见一斑,不仅仅是要掌握这门课的知识这么简单,现实生活中的很多实际问题都能用数学语言来描述,把实际问题转化为
2、数学问题,再来描述、解决问题的过程就是建立数学模型、求解数学模型的过程。在数学教学中,就不能和现实完全脱离,这种和现实脱轨的传统教学状态使学生虽然掌握了技术,却不能学以致用,填鸭式的教育并不能使学生真正成为现在社会需要的有用人才,数学建模就是将数学和外界联系起来的一个通道。通过数学建模培养大学生对于新问题在短时间之内的解决问题的能力,有利于培养大学生的创新思想。目前,数学教育主要还是关注在题目上,学习的目的大部分都是为了获取高分。如果高校的教育从公式、定理展开,学生的作业、学习也依葫芦画瓢的积分微分,这种方式训练出来的学生,往往知其然而不知其所以然
3、,虽然按教材中规中矩、按部就班地授课,可以使学生在短时间内掌握知识,也能获得暂时的效果,然而当学生走向社会时,这样学习到的知识往往不能给他们带来更多的帮助,这种情况显然不是在数学教育中理想的状态。书本上看起来或晦涩难懂或明了清楚的概念理论应该不仅仅带给学生在校时的分数、奖学金,应该了解精髓,懂得他们背后的思想和生命力才是数学带给我们远比学习成绩更重要的东西。无论是以后从事什么岗位,接受过的数学教育锻炼过思维、逻辑,使学生在面对实际问题时更能明白事情的问题所在,更能有逻辑、更有方法的解决问题。这就是要培养学生的自主思考、发散创新的能力。传统的教学过程
4、既然很难做到,那么就要通过别的方法训练大学生面对问题、解决问题的能力。在高校中推广数学建模是一种能实施、易实施又有效的方法。针对现状问题,我们以培养大学生的创新能力及实践能力为目的,通过建设高效的数学建模创新活动,激发大学生的创新活力和运用数学方法解决复杂实际问题的综合能力,拓宽学生的知识面,培养学生的创新精神和团队合作意识。1•从全校相关专业中选拔有实战经验的教师进行培训根据不同专业的特色,从全校范围内选拔优秀的数学建模指导教师团队;根据数学建模特点,对指导教师进行专业培训和学术交流。比如,参加数学建模培训班,与其他高校优秀建模教师进行学术交流。
5、邀请有实战经验的专家做数学建模的学术报告。根据指导教师特点进行分工,研究不同领域的数学建模问题,通过专兼结合达到知识结构的优势互补。2•将数学建模思想融入学生的认知当中现代认知心理学家布鲁纳说:“探索是数学教学的生命线。”Moor教学法提出学习数学最好的方式是“在做数学中学习数学”。因此,在教学中调动学生积极参与数学建模过程中,探索建模方法。在选题时老师应引导学生,开发学生的开放性、探索性,开拓更广阔的探索空间。讲解建模环节,教师要善于把建模材料组织成一个体系,为学生创造探索环境。数学建模环节,教师应尊重学生的主体地位,激励学生独立思考,出错环节协
6、助其自主分析出错原因,并从错误中寻出思维的合理之处。教师引导学生建模主要从两个方面入手:一将实际问题转化为数学问题的能力;二对转化过来的问题,应用数学解决的能力。在教学过程中,教师可以将实际问题还原成所学数学知识,使学生可以借助自己的认知结构主动构建数学模型;从数学问题原型出发,引导学生观察、分析、概括得到数学概念、公式、定理、法则的教学方式符合知识的发生发展的过程,体现教学中解决问题的心理过程。3.在全校根据文理科专业开设数学建模通识课大一上学期,全校范围内开设数学建模通识课,结合各学科的特点,分别开设文科班和理科班,不仅理科生可以受到数学建模思
7、想的熏陶,文科生也可以根据自身的认知体验到数学建模带来的乐趣。邀请有经验的数学建模指导教师进行讲授,要结合学生感兴趣的问题入手。比如,2017年高教社杯全国大学生数学建模竞赛题目B题“拍照赚钱”的任务定价,通过学生感兴趣的“拍照赚钱”等实际问题让学生切身体会到数学建模思想与生活息息相关,让学生带着问题学习。对一些同学难以理解的数学模型的讲解时,教师可以将数学问题转化为学生已有的认知当中,既通俗易懂,又能够让学生通过数学建模产生乐趣。比如,学生在学习难理解的贝叶斯模型时,先验概率对后验概率的影响,不知其意而死记硬背,教学中可以用原型引出贝叶斯模型:已
8、知外界的环境变化影响最终决策者的判断;高等数学中的矩阵,矩阵分解可通过数学建模应用于人脸图像识别、矩阵的特征值及特征向量可
此文档下载收益归作者所有