(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案

(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案

ID:47594291

大小:454.43 KB

页数:19页

时间:2019-09-22

(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案_第1页
(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案_第2页
(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案_第3页
(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案_第4页
(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案_第5页
资源描述:

《(江苏专用)2020版高考数学复习第九章平面解析几何9.8抛物线教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§9.8 抛物线考情考向分析 抛物线的方程、几何性质及与抛物线相关的综合问题是命题的热点.题型既有基础性的填空题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点坐标O(0,0)对称轴x轴y轴焦点坐标FFFF离心率e=1准线方程x=-x=y=-y=范围x≥0,y

2、∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R开口方向向右向左向上向下概念方法微思考1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示 过点F且与l垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示 直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.( × )(2)方程y=ax2(a≠0)表示的曲线是

3、焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.( × )(3)AB为抛物线y2=2px(p>0)的过焦点F的弦,若A(x1,y1),B(x2,y2),则x1x2=,y1y2=-p2,弦长AB=x1+x2+p.( √ )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.( √ )题组二 教材改编2.[P53练习T2]过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则PQ=________.答案 8解析 抛物

4、线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,PQ=PF+QF=x1+1+x2+1=x1+x2+2=8.3.[P51T3]已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为____________________.答案 y2=-8x或x2=-y解析 设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y.4.[P74T14]若抛物线y2=4x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x+4y+7=

5、0的距离之和的最小值是________.答案 2解析 由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离.∴点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为点F(1,0)到直线3x+4y+7=0的距离,即=2.题组三 易错自纠5.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程是________.答案 y2=±4x解析 由已知可知双曲线的焦点为(-,0),(,0).设抛物线方程为y2=±2px(p>0),则=,所以p=2,所

6、以抛物线方程为y2=±4x.6.(2019·如皋调研)在平面直角坐标系xOy中,抛物线y2=2px(p>0)的焦点在直线2x+y-2=0上,则p的值为________.答案 2解析 直线2x+y-2=0与x轴的交点坐标为(1,0),所以抛物线的焦点坐标为(1,0),即=1,p=2.7.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是__________.答案 [-1,1]解析 Q(-2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2

7、x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.题型一 抛物线的定义和标准方程命题点1 定义及应用例1设P是抛物线y2=4x上的一个动点,若B(3,2),则PB+PF的最小值为________.答案 4解析 如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则P1Q=P1F.则有PB+PF≥P1B+P1Q=BQ=4,即PB+PF的最小值为4.引申探究1.若将本例中的B点坐标改为(3,4),试求PB+PF的最小值.解 由题意可知点B(3,4)在抛物线的外部.∵PB+PF的最小值即

8、为B,F两点间的距离,F(1,0),∴PB+PF≥BF==2,即PB+PF的最小值为2.2.若将本例中的条件改为:已知抛物线方程为y2=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。