多元回归分析的步骤

多元回归分析的步骤

ID:47559632

大小:130.50 KB

页数:5页

时间:2020-01-15

多元回归分析的步骤_第1页
多元回归分析的步骤_第2页
多元回归分析的步骤_第3页
多元回归分析的步骤_第4页
多元回归分析的步骤_第5页
资源描述:

《多元回归分析的步骤》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、三、研究方法本文采取多元线性回归的方法来设定并建立模型,再利用逐步回归来对变量予以确认和剔除。逐步回归是通过筛选,挑选偏回归平方和贡献最大的因子建立回归方程,在决定是否引入一个新的因素时,回归方程要用方差比进行显著性检验。如果判别该影响因子通过显著性检验,那么可选入方程中,否则就不应该进入到回归方程,回归方程中剔除一个变量的标准也是用方差比进行显著性检验剔除偏回归平方和贡献最小的变量,无论是入选回归方程还是从回归方程中剔除符合条件的选入项和剔除项为止,逐步回归的方法剔除了对因变量影响小的因素减小了分析问题的难度,提高了计算效率和回归方程的稳定性有较好的预测

2、精度。运用多元线性回归预测的基本思路是在确定因变量和多个自变量以及它们之间的关系后,通过设定自变量参数的回归方程对因变量进行预测。具体如下:式中:Y表示为粮食总产量,C和a为回归系数,C、a是待定参数,X为所选取的影响因素.多元线性回归方法可分为强行进入法、消去法、向前选择法、向后剔除法和逐步进入法等,本文运用SPSS22.0软件,对选择的自变量全部进入回归模型,即强行进入法进行预测。该模型的优点是方法简单、预测速度快、外推性好等。四、分析与结果本文选取6个解释变量,研究河南省粮食产量y,解释变量为:X1粮食播种面积,X2农业从业人,X3农用机械总动力,X

3、4农田有效灌溉面积,X5化肥施用折纯量,X6农村用电量。以河南省粮食产量为因变量,以如上6个解释变量为自变量做多元线性回归(数据选取2014年《河南统计年鉴》,见附录一)。用SPSS做变量的相关分析,从相关矩阵(表4-1)中可以看出y与自变量的相关系数大多都在0.9以上,说明所选择变量与y高度线性相关,用y与自变量做多元线性回归是合适的。表4-1相关X1X2X3X4X5X6y最新范本,供参考!X11.687.965.918.927.970.978X2.6871.686.456.448.731.616X3.965.6861.946.930.990.985X4

4、.918.456.9461.961.921.960X5.927.448.930.9611.901.965X6.970.731.990.921.9011.979y.978.616.985.960.965.9791用SPSS做变量系数分析(表4-2)表4-2系数B标准错误BetaT显著性(常数)-6733.2683146.969-2.140.041X18.3152.765.2623.007.006X2.155.296.121.524.604X3-.199.105-.607-1.901.068X42.6192.687.169.974.338X55.7702.49

5、21.0472.315.028X61.0865.174.089.210.835从(表4-2)中可以得到解释变量与因变量之间的方程为:表4-3变异数分析平方和df平均值平方F显著性回归40712064.12666785344.021165.292.000残差1149417.6792841050.631估计41861481.80534从(表4-3)中发现F=165.292,说明6个自变量整体对因变量y产生显著线性影响。但从表(4-2)最新范本,供参考!中不难发现农业从业人员、农田有效灌溉面积、农村用电量的P值较大,说明方程某些解释变量并不显著,对没有通过检验的

6、回归系数,在一定程度上说明他们对应的自变量在方程中可有可无,一般为了使模型简化,需要剔除不显著的自变量,重新建立回归方程。而且粮食播种面积、农业从业人员、农田有效灌溉面积、化肥施用折纯量、农村用电量对国民总收入起正影响,农用机械总动力却对国民总收入起负影响,与常识相违背,可能存在多重共线性。应用SPSS进行异方差性检验。用斯皮尔曼相关系数检验异方差性也就是检验随机误差项的方差与解释变量观测值之间的相关性。若相关系数较高,则存在异方差性,则不能通过异方差性检验,此时可能会导致参数OLS估计的方差增大,t检验失效,预测精度降低。表4-4相关X1X2X3X4X5

7、X6StandardErrorofPredictedValueSpearman的rhoX11.000.441.439.377.434.439-.090X2.4411.000.993.952.991.993-.303X3.439.9931.000.951.9981.000-.277X4.377.952.9511.000.950.951-.258X5.434.991.998.9501.000.998-.294X6.439.9931.000.951.9981.000-.277StandardErrorofPredictedValue-.090-.303-.277

8、-.258-.294-.2771.000从表4-4中发现残差绝对值

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。