直击高考——函数知识点归纳总结总结

直击高考——函数知识点归纳总结总结

ID:47168012

大小:2.45 MB

页数:14页

时间:2019-08-15

直击高考——函数知识点归纳总结总结_第1页
直击高考——函数知识点归纳总结总结_第2页
直击高考——函数知识点归纳总结总结_第3页
直击高考——函数知识点归纳总结总结_第4页
直击高考——函数知识点归纳总结总结_第5页
资源描述:

《直击高考——函数知识点归纳总结总结》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、.一、函数的概念与表示1、映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。注意点:判断一个对应是映射的方法:可多对一,不可一对多,都有象,象唯一.2、函数:如果A,B都是非空的数集,那么A到B的映射f:AB就叫做A到B的函数,记作,其中.原像的集合A叫做函数的定义域.由所有象f(x)构成的集合叫做的值域,显然值域是集合B的子集.构成函数概念的三要素:①定义域(x的取值范围)②对应法则(f)③值域(y的取

2、值范围)两个函数是同一个函数的条件:定义域和对应关系完全一致.二、函数的定义域、解析式与值域1、求函数定义域的主要依据:(1)整式的定义域是全体实数;(2)分式的分母不为零;(3)偶次方根的被开方数大于等于零;(4)零取零次方没有意义(零指数幂的底数不为0);(5)对数函数的真数必须大于零;(6)指数函数和对数函数的底数必须大于零且不等于1;(7)若函数是一个多项式,需要求出各单项式的定义域,然后取各部分结果的交集;(8)复合函数的定义域:若已知的定义域,求复合函数的定义域,相当于求使时的取值范围;若已知复合函数的定义域,求的定义域,相当于求的值域.2求函

3、数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合的形式;..③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分子或分母为二次且∈R的分式;此种类型不拘泥于判别式法,如的形式可直接用不等式性质;可先化简再用均值不等式;通常用判别式法;可用判别式法或均值不等式;1-1-222④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:1.二次函数必画草图求其值域;在给定区间上求最值有两类:闭区间上的最

4、值;求区间动(定),对称轴定(动)的最值问题;注意“两看”:一看开口,二看对称轴与给定区间的位置关系.2.注意型函数的图像在单调性中的应用:增区间为,,减区间为,;⑦利用对号函数:(如右图);⑧几何意义法:由数形结合,转化距离等求值域.主要是含绝对值函数三.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数.如果对于任意∈A,都有,则称y=f(x)为奇函数.2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,  y=f(x)是奇函数y=f(x)的图象关于原点对称;..②若函数f(x)的定义域关于原点对

5、称,则f(0)=0;③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称;②看f(x)与f(-x)的关系或观察函数图像的对称关系;4,复合函数的奇偶性:“内偶则偶,内奇同外”四、函数的单调性作用:比较大小,解不等式,求最值.1、函数单调性的定义:如果对于定义域I内的某个区间D上的任意两个自变量的值,当时,都有,那么就称函数在区间D上是增函数(减函数),区间D叫的单调区间.图像特点:增函数:从左到右上升(y随x的增大而增大或减小而减小);减函数:从左到右下降(y随

6、x的增大而减小或减小而增大);2.判断单调性方法:①定义法上是增函数;上是减函数.②观察法:根据特殊函数图像特点;③掌握规律:对于两个单调函数和,若它们的定义域分别为和,且:(i)当和具有相同的增减性时,①的增减性与,相同,②、、的增减性不能确定;(ii)当和具有相异的增减性时,我们假设为增函数,为减函数,那么:①的增减性不能确定;②、为增函数;为减函数...3.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。4.复合函数单调性的确定(同增异减):是定义在M上的函数,若f(x)与g(x)的单调性相反,

7、则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数.五、函数的对称性函数的图象的对称性(自身)1.函数的图象关于直对称特殊的有:①函数的图象关于直线对称.②函数的图象关于轴对称(奇函数);③函数是偶函数关于对称;2.函数的图象关于点对称.特殊的有:①函数的图象关于点对称;②函数的图象关于原点对称(奇函数);③函数是奇函数关于点对称.④若一个函数的反函数是它本身,那么它的图像关于直线y=x对称.两个函数图象的对称性:①函数与函数的图象关于直线(即轴)对称;②函数与函数的图象关于直线对称特殊地:与函数的图象关于直线对称;③函数的图象关于直线对

8、称的解析式为;..④函数的图象关于点对称的解析式为;⑤函数与的图像

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。