欢迎来到天天文库
浏览记录
ID:46945909
大小:123.00 KB
页数:5页
时间:2019-11-30
《2.1.2系统抽样 (3)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.1.2 系统抽样【三维目标】1.知识与技能(1)了解系统抽样的定义,特点及操作步骤.(2)理解科学、合理选用抽样方法的必要性.2.过程与方法(1)系统抽样的操作步骤.(2)通过生活实例的对比分析,让学生了解各种抽样方法的使用范围,能根据实际情况选择适当的抽样方法.3.情感、态度与价值观(1)将生活实例与数学进行结合,使学生感受到生活处处有数学;激发学生学习的兴趣,渗透“运用数学”解决实际问题的意识.(2)培养学生科学的探索精神,培养学生合作探讨,相互交流的能力,概括归纳的能力,合情推理的意识.【重点难点】重难点:系统抽样的定义及操作步骤.【教学建议】本课利用多媒体辅助教学
2、,在教法上充分体现教师“问题诱导,启发讨论”的引导作用,在学法上突出学生的“自主探究,合作交流”的学习方式,真正实现“教师为主导,学生为主体”的新课程理念,让学生通过“析案例、议疑难、现过程、得结论、做小结”等一系列学习活动来掌握重点,突破难点,充分发挥学生的主动性和参与性.【教学过程】一、【新课引入】 某中学从5000名学生中选出50人参加2013年10月1日的庆国庆活动,若用抽签法可行吗?[来源:学。科。网Z。X。X。K]二、【新课讲授】知识点一 系统抽样的概念在抽样中,当总体中个体数较大时,可将总体分为均衡的几个部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到
3、所需要的样本,这样的抽样方法叫做系统抽样.系统抽样具有如下特点:项目特点个体数目总体中个体无较大差异且个体数目较大抽取方式总体分成均衡的若干部分,分段间隔相等,在第一段内用简单随机抽样确定起始编号,其余依次加上间隔的整数倍概率特征每个个体被抽到的可能性相同,是等可能抽样知识点二 系统抽样的步骤[来源:学科网ZXXK]一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:(1)编号:先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)分段:确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;(
4、3)确定第一个编号:在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)成样:按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.知识点三 系统抽样与简单随机抽样的区别与联系简单随机抽样系统抽样区别①操作简单易行;②抽样的结果与个体编号无关①当总体中的个体数较大时,用系统抽样更易实施,更节约成本;②系统抽样的效果与个体的编号有关,如果编号的特征随编号呈周期性变化,可能使样本的代表性很差联系系统抽样在总体中的个体均匀分段后,在第一段进行抽样时,采用的是简单随机抽样三、【例题讲解】
5、题型一 对系统抽样概念的理解例1 下列抽样中,最适宜用系统抽样的是( )A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案 C解析 根据系统抽样的定义和特点判断,A项中的总体有明显的层次,不适宜用系统抽样;B项中样本容量很小,适合用随机数法;D项中总体容量很小,适合用抽签法.反思与感悟 系统抽样适用于个体数较大的总体,判断一种抽样是否为系统抽样,首先看在抽样前是否知道总体
6、是由什么构成的.抽样的方法能否保证将总体分成几个均衡的部分,并保证每个个体等可能入样.跟踪训练1 下列抽样方法不是系统抽样的是( )A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈[来源:学*科*网]答案
7、C解析 A编号间隔相同,B时间间隔相同,D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.题型二 系统抽样的应用例2 为了了解某地区今年高一学生期末考试数学学科的成绩,拟从参加考试的15000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解 (1)对全体学生的数学成绩进行编号:1,2,3,…,15000.(2)分段:由于样本容量与总体容量的比是1∶100,所以我们将总体平均分为150个部分,其中每一部分包含100个个体.(3)在第一部分即1号到100
此文档下载收益归作者所有