山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)

山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)

ID:45676363

大小:693.80 KB

页数:7页

时间:2019-11-16

山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)_第1页
山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)_第2页
山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)_第3页
山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)_第4页
山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)_第5页
资源描述:

《山东省齐河县高考数学三轮冲刺 专题 排列组合练习(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、排列组合一、选择题(本大题共12小题,共60分)1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A.12种B.18种C.24种D.36种(正确答案)D【分析】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:种.故选D.2.5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是A.

2、40B.36C.32D.24(正确答案)B解:分类讨论,甲站第2个位置,则乙站1,3中的一个位置,不同的排法有种;甲站第3个位置,则乙站2,4中的一个位置,不同的排法有种;甲站第4个位置,则乙站3,5中的一个位置,不同的排法有种,故共有.故选:B.分类讨论,对甲乙优先考虑,即可得出结论.本题考查计数原理的运用,考查分类讨论的数学思想,比较基础.3.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48B.72C.90D.96(正确答案)D解:根据题

3、意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:、选出的4人没有甲,即选出其他4人即可,有种情况,、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有种选法,则此时共有种选法,则有种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,、选出的4人没有甲,、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.4.为了迎接一年一度的元宵节,某商场大楼安装了5个彩灯

4、,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且只有一个彩灯闪亮,且相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是A.1190秒B.1195秒C.1200秒D.1205秒(正确答案)B解:根据题意,共有5种不同的颜色,其闪烁的顺序有个不同的闪烁,而每个闪烁时间为5秒,闪烁的时间共秒;每两个闪烁之间的间隔为5秒,闪烁间隔的时间秒.那么需要的时间至少是秒.故选:

5、B.根据题意,先依据排列数公式计算彩灯闪烁时间的情况数目,进而分析可得彩灯闪烁的总时间以及闪烁之间的间隔总时间,将其相加即可得答案.本题考查的是排列、组合的应用,要求把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题.5.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A.24B.48C.60D.72(正确答案)D解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有种

6、排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有个.故选:D.用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.6.我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A.28个B.21个C.35个D.56个(正确

7、答案)B解:因为,,,,,,,所以可以分为7类,当三个位数字为1,1,4时,三位数有3个,当三个位数字为1,2,3时,三位数有个,当三个位数字为2,2,2时,三位数有1个,当三个位数字为0,1,5时,三位数有4个,当三个位数字为0,2,4时,三位数有4个,当三个位数字为0,3,3时,三位数有2个,当三个位数字为0,0,6时,三位数有1个,根据分类计数原理得三位数共有.故选B.根据,,,,,,,所以可以分为7类,分别求出每一类的三位数,再根据分类计数原理得到答案.本题主要考查了分类计数原理,关键是找到三个数字

8、之和为6的数分别是什么,属于中档题.7.哈市某公司有五个不同部门,现有4名在校大学生来该公司实习,要求安排到该公司的两个部门,且每部门安排两名,则不同的安排方案种数为A.40B.60C.120D.240(正确答案)B解:此问题可分为两步求解,第一步将四名大学生分为两组,由于分法为2,2,考虑到重复一半,故分组方案应为种,第二步将此两组大学生分到5个部门中的两个部门中,不同的安排方式有,故不同的安排方案有种,故选:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。