2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理

2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理

ID:45506405

大小:365.00 KB

页数:7页

时间:2019-11-14

2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理_第1页
2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理_第2页
2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理_第3页
2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理_第4页
2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理_第5页
资源描述:

《2019-2020年高考数学大一轮复习 7.3空间点、直线、平面之间的位置关系课时作业 理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学大一轮复习7.3空间点、直线、平面之间的位置关系课时作业理 一、选择题1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:若两条直线无公共点,则两条直线可能异面,也可能平行.若两条直线是异面直线,则两条直线必无公共点.答案:A2.若两条直线和一个平面相交成等角,则这两条直线的位置关系是(  )A.平行B.异面C.相交D.平行、异面或相交解析:经验证,当平行、异面或相交时,均有两

2、条直线和一个平面相交成等角的情况出现,故选D.答案:D3.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c(  )A.一定平行B.一定相交C.一定是异面直线D.一定垂直解析:两条平行线中一条与第三条直线垂直,另一条直线也与第三条直线垂直,故选D.答案:D4.已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )A.B.C.D.解析:取DD1的中点F,连接CF,∠D1CF为BE与CD1所成的角,取AB=1,则cos∠D1CF==.故直线BE与

3、CD1所成角的余弦值为.答案:C5.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是(  )A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交解析:若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线.答案:D6.已知a,b,c为三条不同的直线,且a⊂平面M,b⊂平面N,M∩N=c.①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于

4、c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有M⊥N.其中正确命题的个数是(  )A.0B.1C.2D.3解析:命题①③正确,命题②④错误.其中命题②中a和b有可能垂直;命题④中当b∥c时,平面M,N有可能不垂直,故选C.答案:C二、填空题7.三条直线可以确定三个平面,这三条直线的公共点个数是________.解析:因三条直线可以确定三个平面,所以这三条直线有两种情况:一是两两相交,有1个交点;二是互相平行,没有交点.答案:0或18.已知正方体ABCD—A1B1C1D1中,E、F分别为

5、BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.解析:如图,连接DF,因为DF与AE平行,所以∠DFD1即为异面直线AE与D1F所成角的平面角,设正方体的棱长为2,则FD1=FD=,由余弦定理得cos∠DFD1==.答案:9.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.解析:在正四面体中取CD的中点G,连接FG,EG,作FH⊥平面CDE于点H.因为正四面体的高FH在平面EFG内,且FH平行于正方

6、体的高,∴可证得平面EFG平行于正方体的左、右两个侧面,故直线EF仅与正方体的六个面中的上、下两个平面及前、后两个平面相交,共4个.答案:4三、解答题10.如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊AD,BE綊FA,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C、D、F、E四点是否共面?为什么?解:(1)证明:由已知FG=GA,FH=HD,可得GH綊AD.又BC綊AD,∴GH綊BC,∴四边形BCHG为平行四边形.(2)由BE綊AF,G为FA中点

7、知,BE綊FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綊CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C、D、F、E四点共面.11.已知三棱柱ABC—A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示:(1)连接BC1,求异面直线AA1与BC1所成角的大小;(2)连接A1C,A1B,求三棱锥C1—BCA1的体积.解:(1)连接AO,并延长与BC交于点D,则AD是BC边上的中线.∵点O是正△ABC的中心,且A1O⊥平面ABC,∴BC⊥AD,BC⊥A

8、1O.∵AD∩A1O=O,∴BC⊥平面ADA1.∴BC⊥AA1.又AA1∥CC1,∴异面直线AA1与BC1所成的角为∠BC1C.∵CC1⊥BC,即四边形BCC1B1为正方形,∴异面直线AA1与BC1所成角的大小为.(2)∵三棱柱的所有棱长都为2,∴可求得AD=,AO=AD=,A1O==.∴VABC—A1B1C1=S△ABC·A1O=2,VA1—B1C1CB=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。