欢迎来到天天文库
浏览记录
ID:45200825
大小:205.00 KB
页数:15页
时间:2019-11-10
《2018-2019学年高二数学上学期10月月考试卷 文(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、xx-2019学年高二数学上学期10月月考试卷文(含解析)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若平面∥平面,,则直线与的位置关系是( )A.平行或异面B.相交C.异面D.平行【答案】A【解析】【分析】利用平面∥平面,可得平面与平面没有公共点,根据,可得直线,没有公共点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公共点∵,,∴直线,没有公共点∴直线,的位置关系是平行或异面,故选A.【点睛】本题考查面面、线线、线面的位置关系,考查学生分析解决问
2、题的能力以及空间想象力,属于基础题.2.已知过点和的直线与直线平行,则实数的值为( )A.B.C.D.【答案】B【解析】试题分析:两直线平行斜率相等,的斜率为-2,直线的斜率为,解方程得.考点:直线平行.3.正方形的边长为,是水平放置的一个平面图形的直观图,则原图的面积为( )A.B.C.D.【答案】C【解析】【分析】根据斜二测画法的规则可还原出原来的图形,得原图为一个底为1,高为的平行四边形,求出它的面积即可.【详解】如图所示,由斜二测画法的规则知与轴平行的线段其长度不变与横轴平行的性质不变,正方形的对角线在轴上
3、,可求得其长度为,故在平面图中其在轴上,且其长度变为原来的2倍长度为,其原来的图形是平行四边形,所以它的面积是,故选C.【点睛】本题考查了斜二测画法的规则与应用问题,解题时应还原出原来的图形,是基础题.斜二测画法画平面图形直观图的步骤:(1)在已知图形中取互相垂直的轴和轴,两轴相交于点,画直观图时,把它画成对应的轴、轴,使(或),它确定的平面表示水平平面;(2)已知图形中平行于轴或轴的线段,在直观图中分别画成平行于或轴的线段;(3)已知图形中平行于轴的线段,在直观图中保持原长度不变;平行于轴的线段,长度为原来的一半.4
4、.直线的倾斜角的取值范围是( )A. B.C.D.【答案】B【解析】【分析】根据题意,求出直线的斜率,分析可得,由直线的倾斜角与斜率的关系,计算可得答案.【详解】根据题意,直线变形为,其斜率,则有,由正切函数的性质可得倾斜角的范围为;故选B.【点睛】本题考查直线的倾斜角,关键是掌握直线的斜率与倾斜角的关系以及正切函数的性质,属于基础题.5.已知且关于的方程有两相等实根,则向量与的夹角是( )A.-B.-C.D.【答案】D【解析】【分析】根据关于的方程有两个相等的实根便可得到,而由,便可得到,从而便可得出与夹角的大小
5、.【详解】方程有两个相等的实根,∴,∵,∴,∴,∴与的夹角为,故选D.【点睛】考查一元二次方程实根的情况和判别式取值的关系,以及向量数量积的计算公式,向量夹角的范围,已知三角函数值求角.6.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为.若的面积为,则该圆锥的体积为( )A.B.C.D.【答案】A【解析】【分析】利用已知条件求出母线长度,然后求解底面半径为,以及圆锥的高为2,然后求解体积即可.【详解】圆锥的顶点为,母线,互相垂直,的面积为8,可得,解得,与圆锥底面所成角为,可得圆锥的底面半径为,圆锥的高为2,则
6、该圆锥的体积为,故选A.【点睛】本题考查圆锥的体积的求法,母线以及底面所成角的应用,考查转化思想以及计算能力,属于基础题.7.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直
7、关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.8.直线过点,且不过第四象限,则直线的斜率的最大值为()A.0B.1C.D.2【答案】D【解析】【分析】由题意作出图象,利用经过两点,间的斜率定义,结合图象求解.【详解】由直线过点,且不过第四象限,∴作出图象,当直线位于如图所示的阴影区域内时满足条件,由图可知,当直线过,时,直线斜率取最大值,∴直线的斜率的最大值为2,故选D.【点睛】本题考查直线的斜率的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用,属于基础题.9.过球的一条半
8、径的中点,作垂直于该半径的平面,则所得截面的面积是球的表面积的()A.B.C.D.【答案】A【解析】试题分析:如图所示的过球心的截面图,,故正确答案为A.考点:球体的表面积和体积.10.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.B.C.D.【答案】C【解析】【分析】设圆锥底面半径为,母线长为,侧面展开
此文档下载收益归作者所有