资源描述:
《2019-2020年高中数学课下能力提升十五新人教A版(I)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019-2020年高中数学课下能力提升十五新人教A版(I)题组1 事件的分类1.下列事件中,是随机事件的有( )①在一条公路上,交警记录某一小时通过的汽车超过300辆;②若a为整数,则a+1为整数;③发射一颗炮弹,命中目标;④检查流水线上一件产品是合格品还是次品.A.1个B.2个C.3个D.4个2.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品3.在下列事件中,哪些是必然事件?哪些是不可能事件?
2、哪些是随机事件?①如果a,b都是实数,那么a+b=b+a;②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签;③没有水分,种子发芽;④某电话总机在60秒内接到15次传呼;⑤在标准大气压下,水的温度达到50℃时沸腾;⑥同性电荷,相互排斥.题组2 随机事件的频率与概率4.(xx·洛阳检测)下列说法正确的是( )A.任何事件的概率总是在(0,1]之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定5.给出下列3种说法:
3、①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是=;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A.0B.1C.2D.36.从存放号码分别为1,2,3,…,10的卡片的盒里,有放回地取100次,每次取一张卡片,并记下号码,统计结果如下:卡片号码12345678910取到次数17857691891297.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:时间范围1年内2年内3年
4、内4年内新生婴儿数n554496071352017190男婴数nA2883497069948892(1)计算男婴出生的频率(保留4位小数);(2)这一地区男婴出生的频率是否稳定在一个常数上?8.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:成绩人数90分以上4380分~89分18270分~79分26060分~69分9050分~59分6250分以下8经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位)
5、:(1)90分以上;(2)60分~69分;(3)60分以下.题组3 试验结果分析9.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.10.指出下列试验的结果:(1)从装有红、白、黑三种颜色的小球各1个的袋子中任取2个小球;(2)从1,3,6,10四个数中任取两个数(不重复)作差.[能力提升综合练]1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37
6、.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为( )A.374副B.224.4副C.不少于225副D.不多于225副2.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为B.频率为C.频率为6D.概率接近0.63.(xx·深圳调研)“一名同学一次掷出3枚骰子,3枚全是6点”的事件是( )A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件4.“连续掷两枚质地均匀的骰子,记录
7、朝上的点数”,该试验的结果共有( )A.6种B.12种C.24种D.36种5.(xx·济南检测)如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量多的是________.6.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54]2合计100(1)请作
8、出频率分布表,并画出频率分布直方图;(2)估计纤度落在[1.38,1.50)中的概率及纤度小于1.40的概率是多少?答案[学业水平达标练]1.解析:选C 当a为整数时,a+1一定为整数,是必然事件,其余3个为随机事件.2.解析:选D 任意抽取3件的可能情况是:3个正品;2个正品1个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3种可能的结果中,都至少有1个正品,所以至少有1个是正品是必然发生的,即必然事件应该