2019-2020年高考数学总复习专题07不等式分项练习含解析文

2019-2020年高考数学总复习专题07不等式分项练习含解析文

ID:45142286

大小:1.43 MB

页数:13页

时间:2019-11-10

2019-2020年高考数学总复习专题07不等式分项练习含解析文_第1页
2019-2020年高考数学总复习专题07不等式分项练习含解析文_第2页
2019-2020年高考数学总复习专题07不等式分项练习含解析文_第3页
2019-2020年高考数学总复习专题07不等式分项练习含解析文_第4页
2019-2020年高考数学总复习专题07不等式分项练习含解析文_第5页
资源描述:

《2019-2020年高考数学总复习专题07不等式分项练习含解析文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2019-2020年高考数学总复习专题07不等式分项练习含解析文一.基础题组1.【xx天津,文2】已知,则()(A)(B)(C)(D)【答案】A【解析】由函数性质可知,函数在上是减函数,因此得,又因为是增函数,所以,选A2.【xx天津,文7】给出三个命题:①若,则.1②若正整数和满足,则.③设为圆上任一点,圆以为圆心且半径为1.当1时,圆和相切.其中假命题的个数为()(A)0(B)1(C)2(D)3【答案】B本题答案选B3.【xx天津,文3】设变量、满足约束条件则目标函数的最小值为()(A)2    (B)3    (C)4

2、    (D)9【答案】B4.【xx天津,文4】设则()(A)  (B)  (C)  (D)【答案】A【解析】则,选A.5.【xx天津,文15】某公司一年购买某种货物400吨,每次都购买吨,运费为4万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则吨。【答案】20【解析】某公司一年购买某种货物400吨,每次都购买吨,则需要购买次,运费为4万元/次,一年的总存储费用为万元,一年的总运费与总存储费用之和为万元,≥160,当即20吨时,一年的总运费与总存储费用之和最小。6.【xx天津,文2】设变量满足约束条

3、件则目标函数的最大值为(  )A.10B.12C.13D.14【答案】C【解析】解析:先画出约束条件的可行域,如图,得到当时目标函数z=2x+4y有最大值为,Zmax==13.故选C.7.【xx天津,文4】设,,,则()A.B.C.D.【答案】A8.【xx天津,文2】设变量满足约束条件,则目标函数的最大值为(A)2    (B)3    (C)4    (D)5【答案】D【解析】如图,由图象可知目标函数过点时取得最大值,,选D.9.【xx天津,文9】设,,,则(A)(B)(C)(D)【答案】D【解析】,因为,所以,选D10.

4、【xx天津,文2】设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为()A.6B.7C.8D.23【答案】B11.【xx天津,文5】设,,,则()A.a<b<cB.a<c<bC.b<c<aD.b<a<c【答案】B【解析】由对数的性质知:<0,>1,由指数的性质知:0<<1.故选B.12.【xx天津,文9】设x,y∈R,a>1,b>1.若ax=by=3,,则的最大值为()A.2B.C.1D.【答案】C【解析】因为ax=by=3,则,,又,故.故选C.13.【xx天津,文2】设变量x,y满足约束条件则目标函数z=4x+

5、2y的最大值为(  )A.12B.10C.8D.2【答案】B 14.【xx天津,文6】设a=log54,b=(log53)2,c=log45,则(  )A.a<c<bB.b<c<aC.a<b<cD.b<a<c【答案】D【解析】 0<log53<log54<1,log45>1,∴b<a<c.15.【xx天津,文2】设变量满足约束条件,则目标函数的最大值为A.-4B.0C.D.4【答案】D16.【xx天津,文5】117【xx天津,文12】18.【xx天津,文2】设变量x,y满足约束条件则目标函数z=3x-2y的最小值为(  )A

6、.-5B.-4C.-2D.3【答案】B【解析】 由约束条件可得可行域:对于目标函数z=3x-2y,可化为,要使z取最小值,可知过A点时取得.由得即A(0,2),∴z=3×0-2×2=-4.19.【xx天津,文4】已知a=21.2,,c=2log52,则a,b,c的大小关系为(  )A.c<b<aB.c<a<bC.b<a<cD.b<c<a【答案】A20.【xx天津,文2】设变量x,y满足约束条件则目标函数z=y-2x的最小值为(  ).A.-7B.-4C.1D.2【答案】A【解析】作约束条件所表示的可行域,如图所示,z=y-2

7、x可化为y=2x+z,z表示直线在y轴上的截距,截距越大z越大,作直线l0:y=2x,平移l0,当l0过点A(5,3)时,z取最小值,且为-7,选A.21.【xx天津,文2】设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】试题分析:作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.考点:线性规划22.【xx高考天津,文2】设变量满足约束条件,则目标函数的最大值为()(A)7(B)8(C)9(D)14【答案】C【解析】【考点定位】本题主要考查线性规划知识.23

8、.【xx天津,文13】若a,,,则的最小值为___________.【答案】【解析】,前一个等号成立的条件是,后一个等号成立的条件是,两个等号可以同时成立,当且仅当时取等号.【考点】均值不等式【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①,当且仅当时取等号;②,,当且仅当时取

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。