欢迎来到天天文库
浏览记录
ID:44875716
大小:634.01 KB
页数:8页
时间:2019-11-01
《高中数学必修二平面解析几何的教材分析和教学建议》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学必修二平面解析几何的教材分析和教学建议一、课标要求(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素.②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式.③能根据斜率判定两条直线平行或垂直.④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系.⑤能用解方程组的方法求两直线的交点坐标.⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程①掌握确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准
2、方程与一般方程.②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.③能用直线和圆的方程解决一些简单的问题.④初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索得出空间两点间的距离公式.二全国卷近四年直线与圆的高考题及分析年份选择、填空题解答题2013(2013课标全国Ⅰ,文21理20)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线.(1)求的方程;(2)是与圆,圆都相切的一条直线,与曲线
3、交于两点,当圆的半径最长时,求.(2013·新课标全国Ⅱ高考文科·T20)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为。(1)求圆心的轨迹方程;(2)若点到直线的距离为,求圆的方程。82014(2014·新课标全国卷Ⅱ高考文、理科数学·T12)设点,若在圆上存在点,使得,则的取值范围是A.[-1,1]B.C.D.(2014·新课标全国卷文科Ⅰ)已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积2015(2015·新课标全国卷Ⅱ理科·T7)过三点A(1,3),B(4,2),C(1,-7)的圆
4、交轴于两点,则A.2B.8C.D.10(2015·新课标全国卷文科Ⅰ)已知过点且斜率为的直线与圆:交于两点.(I)求的取值范围;(II),其中为坐标原点,求.2016(2016·新课标全国卷文科ⅠT15)设直线与圆相交于两点,若,则圆的面积为____(2016·新课标全国卷ⅡT6)圆的圆心到直线的距离为1,则A.B.C.D.2分析以上四年全国卷,我们可以看出:(1)文科年年都考查直线与圆的位置关系,其中2013、2014、2015年都考查了一道解答题,分值为12分,而2016年考查弱化了,只有一道选择题,分值5分,文科是否有种趋势,考查选择题;理科2013考查一道解答题,
5、2014、2015一道选择题,,2016没有考查直线与圆.(2)试题难度为中等难度,直线与圆的试题没有压轴题,基本都在试卷的中间,选择题考查的偏多,时而为选择的最后一个较难的题.(3)直线与圆的综合题占主流,基本没有单纯考查直线方程的试题多数,多为直线与圆的位置关系、直线与圆中的几何度量(弦长、距离、面积等)、动点的轨迹问题,同时也强化了与其他知识(向量、不等式、函数、圆锥曲线等)的整合.(4)注重数学思想方法的考查,如坐标法、数形结合、函数与方程、化归转化的思想,凸显用代数的方法解决几何问题的能力.三解析几何的基本思想方法8解析几何是几何学的一个分支,是通过坐标法运用代
6、数工具研究几何问题的一门学科,解析几何的基本思想:用代数的方法解决几何问题.解析法,就是坐标法,解析几何就是在坐标系的基础上,用代数的方法研究几何问题一门学科.它将形与数有机地结合起来,体现了数形结合的重要数学思想。用解析法研究几何图形的性质,须先将几何图形置于坐标系下,对“形”进行翻译转化,将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题(把点转化为坐标、把曲线转化为方程);然后,再将代数问题几何化------分析代数语言的几何含义,使代数语言更直观、更形象地表达出来。“翻译”“翻译”“代数运算”几何问题代数问题代数问题的解几何问题的解点
7、坐标曲线方程几何特征数式和数量关系四直线与圆的教学建议(一)重点突出,把握教学要求注意“解析几何”知识内容的前后衔接,准确把握教学要求和难度.《必修2》的直线与方程、圆的方程,以及选修1-1(2-1)中圆锥曲线与方程、选修4-4坐标系与参数方程一起构成了经典的平面解析几何内容的主干,教学时,要注意知识内容的衔接,把相关内容放在平面解析几何内容的通盘中考虑,切实把握每部分的教学要求和难度。例如在圆的教学中,应突出圆的几何特性,回避综合性强、运算量偏大的数学题的训练,避免在解题技巧上做文章.(二)思想渗透,提升数学素养;解析法的思
此文档下载收益归作者所有