五年级下册数学:探索图形

五年级下册数学:探索图形

ID:42638879

大小:68.00 KB

页数:5页

时间:2019-09-18

五年级下册数学:探索图形_第1页
五年级下册数学:探索图形_第2页
五年级下册数学:探索图形_第3页
五年级下册数学:探索图形_第4页
五年级下册数学:探索图形_第5页
资源描述:

《五年级下册数学:探索图形》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、综合与实践探索图形淮南市大通区余巷小学:余松【教学内容】人教版五年级下册第三单元: 表面涂色的正方体(教材第44页探索图形)。【教学目标】1.借助正方体涂色问题,通过实际操作、演示、想象、联想等形式发现小正方体涂色和位置的规律。2.在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。3.在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神,和实事求是的科学态度。【重点难点】引导学生尝试用列表的方法表示发现的结果,并找出小正方体涂色以及它所在的位置的规律。【教法和学法】教法:讨论法和发现法。学法:操作、猜想、验证。【教学准备】1、ppt课件

2、2、小正方体木块100个3、魔方3个教学过程:一、【复习导入】1.正方体的顶点、棱、面各有几个?2.正方体的表面积和体积都需要许多计算才能得到,但是今天我们不去探讨这个,我们今天来进行一个不需要怎么计算,但是需要发挥你们想象力的小探究,好不好?二、【动手实践,探索规律】1.用棱长1cm的小正方体拼成棱长为2cm的大正方体后,把它们的表面分别涂上颜色,需要多少个小正方体?你觉得这些小正方体有什么特点?2.看来同学们都比较聪明,这个问题难不住大家,那么如果将这个大正方体拼得再大一点呢?课件演示:用棱长1cm的小正方体拼成棱长为3cm的的大正方体后,把它们的表面分别涂上颜色。(1)需要

3、多少个小正方体?(课件演示需要9个小正方体)(2)这个时候这些小正方体,都有什么特点呢?(3)提出问题:其中三面、两面、一面涂色的小正方体各有多少个?请大家小组讨论交流。3.如果拼成棱长为4cm、5cm、6cm的的大正方体后,需要多少个小正方体?其中三面、两面、一面涂色的小正方体各有多少个?(1)学生借助直观图独立思考,解决拼成棱长为4cm的大正方体的问题。(2)分类汇报交流。①三面涂色:当学生说出有8个三面涂色的小正方体时,追问:哪8个?学生说出三面涂色的小正方体在原来大正方体的8个顶点的位置。②两面涂色:可能有的学生是数出来的,也可能有的学生是用2×12算出来的。先让用计算方

4、法的学生说一说“为什么用2×12”,从而引导学生发现两面涂色的小正方体都在原来大正方体的棱的位置,体会可以从一条棱上有2个两面涂色的,推算出12条棱上就有24个两面涂色的。引导比较“数”和“算”哪种更简便。③一面涂色:着重交流明确可以由一面有4个一面涂色的小正方体,推算出6个面一共有4×6=24(个)一面涂色的小正方体。还要追问4从哪来的——棱长4,减去两个2个,得到一个边长是2的正方形。(3)学生独立解决棱长平均分成5份的问题。教师课件演示4.发现并总结规律。三面涂色的小正方体都在大正方体的顶点的位置。不论棱长是几,分割后三面涂色的小正方体的个数都是8个。两面涂色的小正方体都在

5、大正方体的棱的位置,只要用每条棱中间两面涂2色的小正方体的个数乘12,就得出两面涂色的小正方体的总个数。一面涂色的小正方体都在大正方体的面的位置,只要用每个面上一面涂色的小正方体的个数乘6,就得出一面涂色的小正方体的总个数。如果把棱长切割为n份的大正方体涂色,三面涂色、两面涂色、一面涂色的小正方体各有多少个?5.利用经验自主探究没有涂色的小正方体与原来大正方体的关系。(1)引导学生自主提出新问题:除了知道三面、两面、一面涂色的小正方体的个数以外,你还想知道什么?(估计学生会提出:没有涂色的小正方体有多少个?)(2)学生讨论方法。估计大部分学生是用小正方体的总个数减去三面、两面、一

6、面涂色的小正方体的总个数。(3)课件演示将三面、两面、一面涂色的小正方体剥离出去的过程,激发学生寻求更简便的方法。 (4)学生自主探究,并填写表格。 (5)展示汇报,从而总结出没有涂色的小正方体的个数是(n-2)×(n-2)个。(6)游戏:把表面涂色的正方体每条棱平均分成10份,从切成的小正方体中任取一个,若3面涂色、2面涂色、1面涂色时,同学赢;否则,老师赢。你认为谁赢得可能性大一些?为什么?(7)回顾探索和发现的过程,说说你的体会。(8)智力冲浪一个正方体,在它的每个面上都涂上红色。再把它切成棱长是1厘米的小正方体。已知两面涂色的小正方体有48个,大正方体的棱长是几厘米?三、

7、【课堂作业】完成教材第44页第(2)题:数正方体的个数2层:1+(1+2)=4或1×2+2×1=43层:1+(1+2)+(1+2+3)=10或1×3+2×2+3×1=104层:1+(1+2)+(1+2+3)+(1+2+3+4)=20或1×4+2×3+3×2+4×1=20四、【课堂小结】1.提问:通过今天的学习你有什么收获,还有什么疑问?2、当我们遇到比较复杂的问题,解决起来有困难时,可以尝试从简单的开始,看能否发现规律,再运用规律去解决复杂的问题,这是一种解决问题常用的思想方法。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。