欢迎来到天天文库
浏览记录
ID:42436921
大小:259.50 KB
页数:8页
时间:2019-09-15
《微积分讲义Chap 1 Completeness axiom of R》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Chapter1Therealnumbersystem1.3.CompletenessaxiomofR1.16DefinitionLetand.(i).ThesetEissaidtobeboundedaboveifthereisans.tforall.(ii).AnumberMiscalledanupperboundofthesetEifforall.(iii).AnumberSiscalledasupremumofthesetEifSsatisfiesthefollowingconditions(1
2、)if,(2)ifMisanupperboundofEthen.RemarkThesupremumisalsocalledtheleastupperbound.1.17:ExampleIfE=[0,1],provethat1isasupremumofE.Proof.1..2.letMbeanupperboundthenforall.Wederivetheresult.1.18:RemarkIfasethasoneupperbound,ithasinfinitelymanyupperboundsProo
3、f:.LetEbeasubsetofR.Letforall.ThenMisanupperbound.LetthenM+bisalsoanupperbound.So,Ehasinfinitelymanyupperbounds.1.19.Theorem.LetEbeanonemptysubsetofR.ThentheleastupperboundofEisuniqueifitexists.Proof.SupposethataretheleastupperboundsofE.Thenareupperboun
4、dsofE..NotationThesupremumisalsocalledleastupperbound.WeusesupEtodenotethesupremumofnonemptysetE.1.20.Theorem[Approximationproperty]exists.Thens.t.Proof:.Supposetheconclusionisfalse.Thereisansuchthat.isanupperbound.s.t1.21.TheoremIfhasasupremum,thenProo
5、f.LetsupE=s.ByApproximationproperty,theres.t.Ifthenisobvious.If,thens.t.1..2..Itisacontradiction.●[CompleteaxiomofR]EverynonemptysubsetEofRthatisboundedabove,thenEhastheleastupperbound..1.22:[ArchimedeanPrinciple]s.tb6、b,let..Eisboundedabove.ByCompletenessofR,supEexists.taken=supE+11.23:Example.LetandprovethatsupA=supB=1Proof.1..isanupperbound.LetMbeanotherbound.2.isanupperboundofB.LetMbeanupperboundofBToshow.SupposenotByArchimedeanprinciple,thereexistssuchthat,forsom7、e.Misanupperbound.●[Well-OrderPrinciple]Ehasaleastelement(ie.s.t)1.24.Theorem(Densityofrational)Letsatisfya0,letByArchimedeanPrinciple.ByWell-OrderPrincipleEhasaleastelement,8、says..Let.Wemustshowthata0.s.ta+k
6、b,let..Eisboundedabove.ByCompletenessofR,supEexists.taken=supE+11.23:Example.LetandprovethatsupA=supB=1Proof.1..isanupperbound.LetMbeanotherbound.2.isanupperboundofB.LetMbeanupperboundofBToshow.SupposenotByArchimedeanprinciple,thereexistssuchthat,forsom
7、e.Misanupperbound.●[Well-OrderPrinciple]Ehasaleastelement(ie.s.t)1.24.Theorem(Densityofrational)Letsatisfya0,letByArchimedeanPrinciple.ByWell-OrderPrincipleEhasaleastelement,
8、says..Let.Wemustshowthata0.s.ta+k
0.s.ta+k
此文档下载收益归作者所有