微积分讲义Chap 1 Completeness axiom of R

微积分讲义Chap 1 Completeness axiom of R

ID:42436921

大小:259.50 KB

页数:8页

时间:2019-09-15

微积分讲义Chap 1 Completeness axiom of R_第1页
微积分讲义Chap 1 Completeness axiom of R_第2页
微积分讲义Chap 1 Completeness axiom of R_第3页
微积分讲义Chap 1 Completeness axiom of R_第4页
微积分讲义Chap 1 Completeness axiom of R_第5页
资源描述:

《微积分讲义Chap 1 Completeness axiom of R》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Chapter1Therealnumbersystem1.3.CompletenessaxiomofR1.16DefinitionLetand.(i).ThesetEissaidtobeboundedaboveifthereisans.tforall.(ii).AnumberMiscalledanupperboundofthesetEifforall.(iii).AnumberSiscalledasupremumofthesetEifSsatisfiesthefollowingconditions(1

2、)if,(2)ifMisanupperboundofEthen.RemarkThesupremumisalsocalledtheleastupperbound.1.17:ExampleIfE=[0,1],provethat1isasupremumofE.Proof.1..2.letMbeanupperboundthenforall.Wederivetheresult.1.18:RemarkIfasethasoneupperbound,ithasinfinitelymanyupperboundsProo

3、f:.LetEbeasubsetofR.Letforall.ThenMisanupperbound.LetthenM+bisalsoanupperbound.So,Ehasinfinitelymanyupperbounds.1.19.Theorem.LetEbeanonemptysubsetofR.ThentheleastupperboundofEisuniqueifitexists.Proof.SupposethataretheleastupperboundsofE.Thenareupperboun

4、dsofE..NotationThesupremumisalsocalledleastupperbound.WeusesupEtodenotethesupremumofnonemptysetE.1.20.Theorem[Approximationproperty]exists.Thens.t.Proof:.Supposetheconclusionisfalse.Thereisansuchthat.isanupperbound.s.t1.21.TheoremIfhasasupremum,thenProo

5、f.LetsupE=s.ByApproximationproperty,theres.t.Ifthenisobvious.If,thens.t.1..2..Itisacontradiction.●[CompleteaxiomofR]EverynonemptysubsetEofRthatisboundedabove,thenEhastheleastupperbound..1.22:[ArchimedeanPrinciple]s.tb

6、b,let..Eisboundedabove.ByCompletenessofR,supEexists.taken=supE+11.23:Example.LetandprovethatsupA=supB=1Proof.1..isanupperbound.LetMbeanotherbound.2.isanupperboundofB.LetMbeanupperboundofBToshow.SupposenotByArchimedeanprinciple,thereexistssuchthat,forsom

7、e.Misanupperbound.●[Well-OrderPrinciple]Ehasaleastelement(ie.s.t)1.24.Theorem(Densityofrational)Letsatisfya0,letByArchimedeanPrinciple.ByWell-OrderPrincipleEhasaleastelement,

8、says..Let.Wemustshowthata0.s.ta+k

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。