欢迎来到天天文库
浏览记录
ID:42349260
大小:2.15 MB
页数:14页
时间:2019-09-13
《专题6.3 等比数列及其前n项和(讲)-2016年高考数学(理)一轮复习讲练测(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第03节等比数列及其前n项和【课前小测摸底细】1.【人教A版教材必修5习题改编】在等比数列中,如果公比,那么等比数列是( ).A.递增数列B.递减数列C.常数列D.无法确定数列的增减性【答案】D2.【2015高考安徽,理14】已知数列是递增的等比数列,,则数列的前项和等于.【答案】3.【2015届陕西西安铁一中学国际合作校高三下学期模拟考】设,,关于的方程的四个实根构成以为公比的等比数列,若,则的取值范围是.【答案】.14汇聚名校名师,奉献精品资源,打造不一样的教育!4.【基础经典试题】设为等比数列的前项和,,则( ).A.-11B.-8C.5D.11
2、【答案】 A【解析】设等比数列的首项为,公比为.因为,所以,∴,∴,.5.【改编2014高考广东卷第13题】等比数列的各项均为正数,且是方程的两根,则.【答案】.【解析】由是方程的两根,可得,即,且数列14汇聚名校名师,奉献精品资源,打造不一样的教育!的各项均为正数,所以,,.【考点深度剖析】等比数列也是高考的常考内容,以等比数列的基本公式及基本运算为基础,可考查单一的等比数列问题,但更倾向于与等差数列或其他内容相结合的问题,其中涉及到方程的思想、等价转化的思想、分类讨论的思想等.从思维品质上看更讲究思维的灵活性及深刻性.【经典例题精析】考点1等比数列的定
3、义,通项公式,前项和的基本运算【1-1】【2014重庆高考第2题】对任意等比数列,下列说法一定正确的是()成等比数列成等比数列成等比数列成等比数列【答案】D【解析】因为数列为等比数列,设其公比为,则所以,一定成等比数列,故选D.【1-2】【学科网高考冲刺关门卷新课标全国卷】已知数列是正项等比数列,若则数列的通项公式为()A.B.C.D.【答案】C[来源:Zxxk.Com]【1-3】【学科网学易大联考新课标全国数学】已知数列满足,,,则的前项和=.【答案】[来源:Zxxk.Com]【解析】∵,∴,∴,∴数列14汇聚名校名师,奉献精品资源,打造不一样的教育!是
4、以1为首项,2为公比的等比数列,∴,∴,,,……,,∴,∴,∴.综合点评:等比数列的基本运算,与等比数列的判定,关于等比数列的基本运算,其实质就是解方程或方程组,需要认真计算,灵活处理已知条件.容易出现的问题主要有两个方面:一是计算出现失误,特别是利用因式分解求解方程的根时,不注意对根的符号进行判断;二是不能灵活运用等比数列的基本性质转化已知条件,导致列出的方程或方程组较为复杂,增大运算量.在判断一个数列是否为等比数列时,应该根据已知条件灵活选用不同的方法,一般是先建立与的关系式或递推关系式,表示出,然后验证其是否为一个与无关的常数.【课本回眸】1.等比数
5、列定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即:,(注意:“从第二项起”、“常数”、等比数列的公比和项都不为零)2.等比数列通项公式为:.说明:(1)由等比数列的通项公式可以知道:当公比时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若为等比数列,则.3.等比中项如果在中间插入一个数,使成等比数列,那么叫做的等比中项(两个符号相同的非零实数,都有两个等比中项)4.等比数列前项和公式一般地,设等比数列的前n项和是,当时,或;当时,(错位相
6、减法).14汇聚名校名师,奉献精品资源,打造不一样的教育!说明:(1)(1)和各已知三个可求第四个;(2)注意求和公式中是,通项公式中是不要混淆;(3)应用求和公式时,必要时应讨论的情况.5.等差数列与等比数列的区分与联系(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.(2)如果数列成等比数列,且,那么数列(,且)必成等差数列.(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列.数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果由一个等差数列与一个等比数列的公共项顺次组成新数列,那么常选用“由特殊到一般”的方
7、法进行讨论,且以等比数列的项为主,探求等比数列中哪些项是它们的公共项,构成什么样的新数列.【方法规律技巧】1.等比数列的判定方法(1)定义法:对于数列,若,则数列是等比数列;(2)等比中项:对于数列,若,则数列是等比数列;(3)通项公式法 (均是不为0的常数,)⇔是等比数列.2.求解等比数列的基本量常用的思想方法(1)方程的思想:在解有关等比数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等比数列的通项公式及前项和公式或,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值
8、.运用方程的思想解等比数列是常见题型,解决此类问题需要抓住基本量、
此文档下载收益归作者所有