Smoothing spline models with correlated random errors

Smoothing spline models with correlated random errors

ID:40961499

大小:369.36 KB

页数:27页

时间:2019-08-12

Smoothing spline models with correlated random errors_第1页
Smoothing spline models with correlated random errors_第2页
Smoothing spline models with correlated random errors_第3页
Smoothing spline models with correlated random errors_第4页
Smoothing spline models with correlated random errors_第5页
资源描述:

《Smoothing spline models with correlated random errors》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、DEPARTMENTOFSTATISTICSUniversityofWisconsin1210WestDaytonSt.Madison,WI53706TECHNICALREPORTNO.966August1996SmoothingSplineModels1WithCorrelatedRandomErrorsbyYuedongWang1ResearchsponsoredinpartbyNIHGrantsR01EY09946,P60DK20572andP30HD18258.SmoothingSplineModelsWithCorrelatedRandomErrorsyYued

2、ongWangDepartmentofBiostatistics,UniversityofMichigan,AnnArbor,Michigan48109,U.S.A.August30,1996AbstractSplinesmoothingisapopularmethodofestimatingthefunctionsinanonpara-metricregressionmodel.Itsperformancegreatlydependsonthechoiceofsmoothingparameters.Manymethodsofselectingsmoothingparam

3、eterssuchasCV,GCV,UBRandGMLaredevelopedundertheassumptionofindependentobservations.Theyfailbadlywhendataarecorrelated.Inthispaper,weassumeobservationsarecorrelatedandthecorrelationmatrixdependsonaparsimonioussetofparameters.WeextendtheGML,GCVandUBRmethodstoestimatethesmoothingparametersan

4、dthecorre-lationparameterssimultaneously.Wealsoconnectasmoothingsplinemodelwiththreemixed-e ectsmodels.Theseconnectionsshowthatthesmoothingsplineestimateseval-uatedatdesignpointsareBLUPestimatesandtheGMLestimatesofthesmoothingparametersandthecorrelationparametersareREMLestimates.Theseconn

5、ectionsalsosuggestawayto tasplinemodelwithcorrelatederrorsusingtheexistingSASprocedureprocmixed.Weillustrateourmethodswithapplicationstotwotimeseriesdatasetsandaspatialdataset.SimulationsareconductedtoevaluateandcomparetheperformanceoftheGML,GCV,UBRmethodsandthemethodproposedinDiggleandHu

6、tchinson(1989).TheGMLmethodisrecommendedsinceitisstableandworkswellinallsimulations.Itperformsbetterthanothermethods,especiallywhenthesamplesizeisnotlarge.Keywords:Bestlinearunbiasedprediction;Generalizedcross-validation;Gener-alizedmaximumlikelihood;Unbiasedrisk;Mixed-e ectsmodel;Restric

7、tedmaximumlikelihood;Smoothingparameters;Smoothingspline;SmoothingsplineANOVA.1IntroductionInthispaperweconsiderthegeneralsmoothingsplinemodelsinWahba(1990).ForanddarbitraryindexsetT(e.g.,T=f1;;Ng,T=[0;1]orT=E,whereEistheEuclideanyE-mail:yuedong@umich.edu.1d-spac

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。