欢迎来到天天文库
浏览记录
ID:40912284
大小:2.41 MB
页数:32页
时间:2019-08-10
《高考数学应用问题的题型与方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高考数学应用问题的题型与方法一.复习目标:数学应用性问题是历年高考命题的主要题型之一,也是考生失分较多的一种题型.高考中一般命制一道解答题和两道选择填空题.解答这类问题的要害是深刻理解题意,学会文字语言向数学的符号语言的翻译转化,这就需要建立恰当的数学模型,这当中,函数,数列,不等式,排列组合是较为常见的模型,而三角,立几,解几等模型也应在复课时引起重视.由于数学问题的广泛性,实际问题的复杂性,干扰因素的多元性,更由于实际问题的专一性,这些都给学生能读懂题目提供的条件和要求,在陌生的情景中找出本质的内容,转化为函数、方程、不等式、数列、排列、组合、概率
2、、曲线、解三角形等问题.二.考试要求:“考试说明”对于“解决实际问题的能力”的界定是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括提炼、解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述.并且指出:对数学应用问题,要把握好提出问题所涉及的数学知识和方法的深度和广度,切合中学数学教学实际.应用问题的“考试要求”是考查考生的应用意识和运用数学知识与方法来分析问题解决问题的能力,这个要求分解为三个要点:1、要求考生关心国家大事,了解信息社会,讲究联系实际,重视数学在生产、生活及科学中的应用,明确“数学有
3、用,要用数学”,并积累处理实际问题的经验.2、考查理解语言的能力,要求考生能够从普通语言中捕捉信息,将普通语言转化为数学语言,以数学语言为工具进行数学思维与交流.3、考查建立数学模型的初步能力,并能运用“考试说明”所规定的数学知识和方法来求解.三.教学过程:(Ⅰ)基础知识详析(一)高考应用性问题的热门话题是增减比率型和方案优化型,另外,估测计算型和信息迁移型也时有出现.当然,数学高考应用性问题关注当前国内外的政治,经济,文化,紧扣时代的主旋律,凸显了学科综合的特色.求解应用题的一般步骤是(四步法):1、读题:读懂和深刻理解,译为数学语言,找出主要关系;
4、2、建模:把主要关系近似化、形式化,抽象成数学问题;3、求解:化归为常规问题,选择合适的数学方法求解;4、评价:对结果进行验证或评估,对错误加以调节,最后将结果应用于现实,作出解释或验证.在近几年高考中,经常涉及的数学模型,有以下一些类型:数列模型、函数模型、不等式模型、三角模型、排列组合模型等等.Ⅰ.函数模型函数是中学数学中最重要的一部分内容,现实世界中普遍存在着的最优化问题,常常可归结为函数的最值问题,通过建立相应的目标函数,确定变量的限制条件,运用函数知识和方法去解决.⑴根据题意,熟练地建立函数模型;⑵运用函数性质、不等式等知识处理所得的函数模型
5、.32Ⅱ.几何模型诸如航行、建桥、测量、人造卫星等涉及一定图形属性的应用问题,常常需要应用几何图形的性质,或用方程、不等式或用三角函数知识来求解.Ⅲ.数列模型在经济活动中,诸如增长率、降低率、存款复利、分期付款等与年(月)份有关的实际问题,大多可归结为数列问题,即通过建立相应的数列模型来解决.在解应用题时,是否是数列问题一是看自变量是否与正整数有关;二是看是否符合一定的规律,可先从特殊的情形入手,再寻找一般的规律.中学数学各个章节中有关应用问题的内容分别是:1.函数:能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.2.不等式:掌握两
6、个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.3.平面向量:在立体几何与解析几何中的应用.4.三角函数:理解函数y=Asin(ωx+ψ)中A、ω、ψ的物理意义;掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.5.数列:能运用公式解决简单的问题.6.直线和圆的方程:了解线性规划的意义,并会简单的应用.7.圆锥曲线方程:了解圆锥曲线的初步应用.8.直线、平面、简单几何体:平面及其基本性质,平面图形直观图的画法.平行直线,对应边分别平行的角,异面直线所成的角,异面直线的公垂线,异面直线
7、的距离.直线和平面平行的判定与性质,直线和平面垂直的判定与性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理.平行平面的判定与性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质.多面体、棱柱、棱锥、正多面体、球等各部分都有应用.9.排列、组合、二项式定理:⑴掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题;⑵理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的问题.⑶理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. ⑷掌握二项式定理和二项展开
8、式的性质,并能用它们计算和证明一些简单的问题.这部分主要解决⑴不同类问题(可重复排列问题,不可
此文档下载收益归作者所有