201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING

201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING

ID:40876970

大小:395.57 KB

页数:27页

时间:2019-08-09

201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING_第1页
201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING_第2页
201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING_第3页
201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING_第4页
201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING_第5页
资源描述:

《201005-A FIRST-ORDER AUGMENTED LAGRANGIAN METHOD FOR COMPRESSED SENSING》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AFIRST-ORDERAUGMENTEDLAGRANGIANMETHODFORCOMPRESSEDSENSINGN.S.AYBAT∗ANDG.IYENGAR†Abstract.Inthispaper,weproposeafirst-orderaugmentedLagrangianalgorithm(FAL)thatsolvesthebasispursuit(k)1problemmin{kxk1:Ax=b}byinexactlysolvingasequenceofproblemsoftheformminx∈ℜnλkxk1+

2、2kAx−b−λ(k)θ(k)k2,foranappropriatelychosensequenceofmultipliers{(λ(k),θ(k))}k∈Z+.Eachofthesesubproblemsaresolvedusing2Algorithm3in[19]whereineachupdatereducesto“shrinkage”[12]orconstrained“shrinkage”.WeshowthatFALconvergestoanoptimalsolutionx∗ofthebasispursuitprob

3、lem,i.e.x∗∈argmin{kxk1:Ax=b}andthatthereexistapriorifixedsequence{λ(k)}k∈Z+suchthatforallǫ>0,iteratesx(k)computedbyFALareǫ-feasible,i.e.kAx(k)−bk2≤ǫ,andǫ-optimal,kx(k)k≤ǫ,afterO(ǫ−1)iterations,wherethecomplexityofeachiterationisO(nlog(n)).Wealsoreportthe1−kx∗k1resu

4、ltsofnumericalexperimentscomparingtheperformanceofFALwithSPA[1],NESTA[18],FPC[10,11],FPC-AS[21]andaBregman-regularizedsolver[20].AverystrikingresultthatweobservedinournumericalexperimentswasthatFALalwayscorrectlyidentifiesthezero-setofthetargetsignalwithoutanythres

5、holdingorpost-processingforallreasonablysmallerrortolerancevalues.1.Introduction.Inthispaperwedesignanewfirst-orderaugmentedLagrangianalgorithmforsolvingtheℓ1-minimizationproblemminkxk1subjecttoAx=b,(1.1)x∈RnPnmnm×nwhereℓ1-normkxk1=i=1

6、xi

7、,xidenotesthei-thcomponent

8、ofthevectorx,b∈R,x∈R,A∈Randthenumberofequationsm≪n.Thisproblemcanbereformulatedintoalinearprogram(LP)andtherefore,can,intheory,besolvedefficiently.LPsoftheform(1.1)haverecentlyattractedalotofattentionsincetheyappearinthecontextofanewsignalprocessingparadigmknownasco

9、mpressivesensing(CS)[4,5,6,9].ThegoalinCSistorecoverasparsesignalxfromasmallsetoflinearmeasurementsortransformvaluesb=Ax.OrdinarilythesparsesignalwouldhavetoberecoveredbysolvingtheNP-hardℓ0-minimizationproblemminkxk0subjecttoAx=b,(1.2)x∈RnPnwheretheℓ0normkxk0=i=11

10、(xi6=0).Recently,Candes,RombergandTao[4,5,6]andDonoho[9]haveshownthatwhenthetargetsignalxiss-sparse,i.e.onlysofthencomponentsarenon-zeros,themeasurement

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。