函数周期性教案

函数周期性教案

ID:40787060

大小:122.00 KB

页数:5页

时间:2019-08-07

函数周期性教案_第1页
函数周期性教案_第2页
函数周期性教案_第3页
函数周期性教案_第4页
函数周期性教案_第5页
资源描述:

《函数周期性教案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数周期性教案一,函数周期性1,函数周期性的关键的几个字“有规律地重复出现”。当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期,2.最小正周期的概念:对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。对于正弦函数y=sinx,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。(说明:如果以后无特殊说明,周期指的就是最小正周期。)在函数图象上,最小正周期

2、是函数图象重复出现需要的最短距离。3.周期函数性质:(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。(5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则(Q是有理数集)(6)若T1、T2是f(X)的两个周期,且是无理数,则f(X)不存在最小正周期。(7)周期函数f(X)的定义域M必定是双方无界的集合。5在数学中,我们发现真理的

3、主要工具是归纳和模拟.电话:0838—23056222309322地址:德阳市旌阳区文庙广场1号2栋32号4.重要推论1,若有f(x)的2个对称轴x=a,x=b.则T=2

4、a-b

5、2,若有f(X)的2个对称中心(a,0)(b,0)则T=2

6、a-b

7、3,若有f(x)的1个对称轴x=a,和1个对称中心(b,0),则T=4

8、a-b

9、二,周期函数的性质及题型。利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是

10、周期函数.(1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.(2)函数y=f(x)满足f(x+a)=,则f(x)是周期函数,且2a是它的一个周期.(3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期.命题2:若a、b()是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1)函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且

11、a-b

12、是它的一个周期.(2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2

13、a-b

14、

15、是它的一个周期.(3)函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2

16、a-b

17、是它的一个周期.(4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4

18、a-b

19、是它的一个周期.命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数.(1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期.(2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期.我们也可以把命题3看成命题2的

20、特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似.设条件A:定义在R上的函数f(x)是一个偶函数.条件B:f(x)关于x=a对称条件C:f(x)是周期函数,且2a是其一个周期.结论:已知其中的任两个条件可推出剩余一个.证明:①已知A、B→C(2001年全国高考第22题第二问)∵f(x)是R上的偶函数∴f(-x)=f(x)又∵f(x)关于x=a对称∴f(-x)=f(x+2a)5在数学中,我们发现真理的主要工具是归纳和模拟.电话:0838—23056222309322地址:德阳市旌阳区文庙广场1号2栋32号∴f(x)=f(

21、x+2a)∴f(x)是周期函数,且2a是它的一个周期②已知A、C→B∵定义在R上的函数f(x)是一个偶函数∴f(-x)=f(x)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a)∴f(x)关于x=a对称③已知C、B→A∵f(x)关于x=a对称∴f(-x)=f(x+2a)又∵2a是f(x)一个周期∴f(x)=f(x+2a)∴f(-x)=f(x)∴f(x)是R上的偶函数由命题3(2)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。