Information from street view imagery

Information from street view imagery

ID:40719008

大小:3.88 MB

页数:7页

时间:2019-08-06

Information from street view imagery_第1页
Information from street view imagery_第2页
Information from street view imagery_第3页
Information from street view imagery_第4页
Information from street view imagery_第5页
资源描述:

《Information from street view imagery》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Attention-basedExtractionofStructuredInformationfromStreetViewImageryZbigniewWojnaAlexGorbanyDar-ShyangLeeyKevinMurphyyQianYuyYeqingLiyJulianIbarzyUniversityCollegeLondonyGoogleInc.Abstract—Wepresentaneuralnetworkmodel—basedonFinally,westudytheaccuracyandspeedofusin

2、g3differ-CNNs,RNNsandanovelattentionmechanism—whichachievesentCNN-basedfeatureextractors(namelyinception-v2[9],84.2%accuracyonthechallengingFrenchStreetNameSignsinception-v3[10]andinception-resnet-v2[10])asinputto(FSNS)dataset,significantlyoutperformingthepreviousstate

3、ourattentionmodel.Wefindthatinception-v3andinception-oftheart(Smith’16),whichachieved72.46%.Furthermore,ournewmethodismuchsimplerandmoregeneralthantheresnet-v2performcomparably,andbothsignificantlyoutper-previousapproach.Todemonstratethegeneralityofourmodel,forminceptio

4、n-v2.Motivatedbytheneedforspeed,wealsoweshowthatitalsoperformswellonanevenmorechallengingstudytheeffectofusing“ablated”versionsofthesemodels,datasetderivedfromGoogleStreetView,inwhichthegoaliswhichusefewerlayers.Interestingly,wefindthatforallthreetoextractbusinessnames

5、fromstorefronts.Finally,westudynetworks,theaccuracyinitiallyincreaseswithdepth,butthenthespeed/accuracytradeoffthatresultsfromusingCNNfeatureextractorsofdifferentdepths.Surprisingly,wefindthatdeeperstartstodecrease.Thisisincontrasttomodelstrainedontheisnotalwaysbetter(

6、intermsofaccuracy,aswellasspeed).ILSVRCImagenetdataset[11],whichiscomparableinsizeOurresultingmodelissimple,accurateandfast,allowingittoFSNS.Forimageclassification,accuracytendstoincreasetobeusedatscaleonavarietyofchallengingreal-worldtextwithdepthmonotonically.Webelie

7、vethedifferenceisthatextractionproblems.imageclassificationneedsverycomplicatedfeatures,whichI.INTRODUCTIONarespatiallyinvariant,whereas,fortextextraction,ithurtstoTextrecognitioninanunconstrainednaturalenvironmentisusetousesuchfeatures.achallengingcomputervisionandmac

8、hinelearningproblem.Insummary,ourcontributionsareasfollows:(1)WepresentTraditionalOpticalCharacterRecognition(OCR)systemsano

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。