结构方程模型(SEM)及其应用举例

结构方程模型(SEM)及其应用举例

ID:40295015

大小:50.50 KB

页数:3页

时间:2019-07-30

结构方程模型(SEM)及其应用举例_第1页
结构方程模型(SEM)及其应用举例_第2页
结构方程模型(SEM)及其应用举例_第3页
资源描述:

《结构方程模型(SEM)及其应用举例》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、结构方程模型(SEM)及其应用举例该分公司有三类业务:无线业务、宽带业务以及综合业务。围绕着这三类业务产品的销售,该通信分公司还提供了售前、售中和售后三个环节多方面的服务。结合该通信分公司的主要产品情况,从顾客满意度着手,重点分析并找出影响顾客满意的关键因素,从而为制定有效的顾客满意度提升方案提供数据支持。1.设计满意度模型  根据该公司的业务具体情况,设计出了顾客满意度模型,如下图:  图:某通信分公司顾客满意度SEM模型    上图显示,该公司重点要考察的是产品满意度和服务满意度对顾客满意度的影响。图中的Xn是待构建的测量指标,λ值表示各指标对上级指标的影响大小

2、,ζn和δn表示误差,是受模型外因素影响的部分,如价格满意度等其他因素。结构方程模型-结构方程模型的优点  (一)同时处理多个因变量  结构方程分析可同时考虑并处理多个因变量。在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。  (二)容许自变量和因变量含测量误差  态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。结构方程分析容许自变量和因变量均含测量误差。变量也可用多个指标测量。用

3、传统方法计算的潜变量间相关系数,与用结构议程分析计算的潜变量间相关系数,可能相差很大。  (三)同时估计因子结构和因子关系  假设要了解潜变量之间的相关,每个潜变量者用我个指标或题目测量,一个常用的做法是对每个潜变量先用因子分析计算潜变量(即因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。这是两个独立的步骤。在结构方程中,这两步同时进行,即因子与题目之间的关系和因子与因子之间的关系同时考虑。  (四)容许更大弹性的测量模型  传统上,我们只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加

4、复杂的模型。例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)既从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。传统因子分析难以处理一个指标从属多个因子或者考虑高阶因子等有比较复杂的从属关系的模型。  (五)估计整个模型的拟合程度  在传统路径分析中,我们只估计每一路径(变量间关系)的强弱。在结构方程分析中,除了上述参数的估计外,我们还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。结构方程模型-三种分析方法对比  线性相关分析:线性相关分析指出两个随机变量之间的统计联系。两个变量地位平等,

5、没有因变量和自变量之分。因此相关系数不能反映单指标与总体之间的因果关系。  线性回归分析:线性回归是比线性相关更复杂的方法,它在模型中定义了因变量和自变量。但它只能提供变量间的直接效应而不能显示可能存在的间接效应。而且会因为共线性的原因,导致出现单项指标与总体出现负相关等无法解释的数据分析结果。  结构方程模型分析:结构方程模型是一种建立、估计和检验因果关系模型的方法。模型中既包含有可观测的显在变量,也可能包含无法直接观测的潜在变量。结构方程模型可以替代多重回归、通径分析、因子分析、协方差分析等方法,清晰分析单项指标对总体的作用和单项指标间的相互关系。  简单而言,

6、与传统的回归分析不同,结构方程分析能同时处理多个因变量,并可比较及评价不同的理论模型。与传统的探索性因子分析不同,在结构方程模型中,我们可以提出一个特定的因子结构,并检验它是否吻合数据。通过结构方程多组分析,我们可以了解不同组别内各变量的关系是否保持不变,各因子的均值是否有显著差异。”  目前,已经有多种软件可以处理SEM,包括:LISREL,AMOS,EQS,Mplus.结构方程模型-结构方程模型假设条件  ·合理的样本量(JamesStevens的AppliedMultivariateStatisticsfortheSocialSciences一书中说平均一个自

7、变量大约需要15个case;BentlerandChou(1987)说平均一个估计参数需要5个case就差不多了,但前提是数据质量非常好;这两种说法基本上是等价的;而Loehlin(1992)在进行蒙特卡罗模拟之后发现对于包含2~4个因子的模型,至少需要100个case,当然200更好;小样本量容易导致模型计算时收敛的失败进而影响到参数估计;特别要注意的是当数据质量不好比如不服从正态分布或者受到污染时,更需要大的样本量)  ·连续的正态内生变量(注意一种表面不连续的特例:underlyingcontinuous;对于内生变量的分布,理想情况是联合多元正态分布即J

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。