分步计数原理与分类计数原理

分步计数原理与分类计数原理

ID:40111871

大小:418.00 KB

页数:26页

时间:2019-07-21

分步计数原理与分类计数原理_第1页
分步计数原理与分类计数原理_第2页
分步计数原理与分类计数原理_第3页
分步计数原理与分类计数原理_第4页
分步计数原理与分类计数原理_第5页
资源描述:

《分步计数原理与分类计数原理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1分类计数原理与分步计数原理2008年29届夏季奥运会在北京举行.奥运会足球赛共有16个队参赛.它们先分成4个小组进行循环赛,决出8强,这8个队按确定的程序进行淘汰赛后,最后决出冠亚军,此外还决出了第三、第四名.问一共安排了多少场比赛?实际问题要回答这个问题,就要用到排列、组合的知识.在运用排列、组合方法时,经常要用到分类计数原理与分步计数原理.用一个大写的的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1问题2.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽

2、车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以从甲地到乙地共有4+2+3=9种方法。一、分类计数原理完成一件事,有两类办法.在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有2)首先要根据具体的问题确定一个分类标准,在分类标准下进行分类,然后对每类方法计数.1)各类办法之间相互独立,都能独立的完成这件事,要计算方法种数,只需将各类方

3、法数相加,因此分类计数原理又称加法原理说明N=m+n种不同的方法问题3、用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,···,B1,B2,···的方式给教室里的座位编号,总共能编出多少个不同的号码?字母数字得到的号码A123456789A1A2A3A4A5A6A7A8A9树形图二、分步计数原理完成一件事,需要两个步骤。做第1步有m种不同的方法,做第2步有n种不同的方法,则完成这件事共有2)首先要根据具体问题的特点确定一个分步的标准,然后对每步方法计数.1)各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,将

4、各个步骤的方法数相乘得到完成这件事的方法总数,又称乘法原理说明N=m×n种不同的方法加法原理乘法原理联系区别一完成一件事情共有n类办法,关键词是“分类”完成一件事情,共分n个步骤,关键词是“分步”区别二每类办法都能独立完成这件事情。每一步得到的只是中间结果,任何一步都不能能独立完成这件事情,缺少任何一步也不能完成这件事情,只有每个步骤完成了,才能完成这件事情。分类计数原理和分步计数原理,回答的都是关于完成一件事情的不同方法的种数的问题。区别三各类办法是互斥的、并列的、独立的各步之间是相关联的分类计数与分步计数原理的区别和联系

5、:例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学化学医学物理学工程学数学会计学信息技术学法学如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。根据分类计数原理:这名同学可能的专业选择共有5+4=9种。例2、设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?例3、肥城市的部分电话号码是0538323××××,后面每个数字来自0~9这10个数,

6、问可以产生多少个不同的电话号码?变式:若要求最后4个数字不重复,则又有多少种不同的电话号码?053832310101010×××=104分析:分析:=504010987×××例4、书架上第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.(2)从书架的第1、2、3层各取1本书,有多少种不同取法?N=4+3+2=9N=4×3×2=24(1)从书架上任取1本书,有多少种不同的取法?解:需先分类再分步.(3)从书架上取2本不同种的书,有多少种不同的取法?根据两个基本原理,不同的取法总数是N=4×

7、3+4×2+3×2=26第一类:从一、二层各取一本,有4×3=12种方法;第二类:从一、三层各取一本,有4×2=8种方法;第三类:从二、三层各取一本,有3×2=6种方法;答:从书架上取2本不同种的书,有26种不同的取法.例5、要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,问共有多少种不同的挂法?课堂练习1、8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?2、将4封信投入3个邮筒,有多少种不同的投法?3、已知则方程可表示不同的圆的个数有多少?4.要从甲、乙、丙3名工人中选出2名分别上日

8、班和晚班,有多少种不同的选法?第一步:选1人上日班;第二步:选1人上晚班.有3种方法有2种方法N=3×2=6(种)5.从5人中选4人参加数、理、化学科竞赛,其中数学2人,理、化各1人,求共有多少种不同的选法?数学2人化学1人物理1人5种4种3种N=5×4×3=60(种)6.三个比赛项目,六

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。