On the parabolic kernel of the schrodinger operator

On the parabolic kernel of the schrodinger operator

ID:39718988

大小:1.50 MB

页数:49页

时间:2019-07-10

On the parabolic kernel of the schrodinger operator_第1页
On the parabolic kernel of the schrodinger operator_第2页
On the parabolic kernel of the schrodinger operator_第3页
On the parabolic kernel of the schrodinger operator_第4页
On the parabolic kernel of the schrodinger operator_第5页
资源描述:

《On the parabolic kernel of the schrodinger operator》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、OntheparabolickerneloftheSchr6dingeroperatorbyPETERLI(l)andSHINGTUNGYAUUniversityofUtahUniversityofCalifornia,SanDiegoSaltLakeCity,UT,U.S.A.LaJolla,CA,U.S.A.Tableofcontentsw0.Introduction.............................153w1.Gradientestimates.........................155w2.Harnackinequalities..........

2、..............166w3.Upperboundsoffundamentalsolutions..............170w4.Lowerboundsoffundamentalsolutions..............181w5.HeatequationandGreen'skernel.................190w6.TheSchr6dingeroperator......................196Appendix.................................199References.....................

3、...........200w0.IntroductionInthispaper,wewillstudyparabolicequationsofthetype(A-q(x,t)-~)u(x,t)=O(0.1)onageneralRiemannianmanifold.Thefunctionq(x,t)isassumedtobeC2inthefirstvariableandC1inthesecondvariable.Inclassicalsituations[20],aHarnackinequalityforpositivesolutionswasestablishedlocally.Howev

4、er,thegeometricdependencyoftheestimatesiscomplicatedandsometimesunclear.OurgoalistoproveaHarnackinequalityforpositivesolutionsof(0.1)(w2)byutilizingagradientestimatederivedinw1.Themethodofproofisoriginatedin[26]and[8],wheretheyhavestudiedtheellipticcase,i.e.thesolutionistimeindependent.Insomesituat

5、ions(Theorems2.2and(1)ResearchpartiallysupportedbyaSloanfellowshipandanNSFgrant.11-868283ActaMathematica156.Imprim6le15mai1986154PETERLIANDSHINGTUNGYAU2.3),theHarnackinequalityisvalidglobally,whichenablesustorelatetheglobalgeometrywiththeanalysis.Inw3,weapplytheHarnackinequalitytoobtainupperestimat

6、esforthefunda-mentalsolutionoftheequation(A-q(x)-~tt)u(x,t)=0,(0.2)whereqisafunctiononMalone.Weshallpointoutthatfortheheatequation(q=0),upperestimatesfortheheatkernelwereobtainedin[7]and[5].Howevertheestimatewhichweobtainissofarthesharpest,especiallyforlargetime.WhentheRiccicurvatureisnonnegativeth

7、esharpnessisapparent,sinceacomparablelowerboundisalsoobtainedinw4.Alowerboundforthefundamentalsolutionof(0.2)isalsoderivedforsomespecialsituations.Applicationsoftheseestimatesfortheheatkernelarediscussedinw

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。